
Computation of Stirling numbers and
generalizations

S. Ilie
Dept. Mathematics,
Ryerson University

silvana@ryerson.ca

D. J. Jeffrey
Dept. Applied Mathematics
Western University · Canada

djeffrey@uwo.ca

R. M. Corless
Dept. Applied Mathematics
Western University · Canada

rcorless@uwo.ca

X. Zhang
Dept. Applied Mathematics
Western University · Canada

xzhan695@uwo.ca

Abstract—We consider the computation of Stirling numbers
and generalizations for positive and negative arguments. We
describe computational schemes for Stirling Partition and Stir-
ling Cycle numbers, and for their generalizations to associated
Stirling numbers. The schemes use recurrence relations and are
more efficient than the current method used in MAPLE for cycle
numbers, which is based on an algebraic expansion. We also
point out that the proposed generalization of Stirling numbers
due to Flajolet and Prodinger changes the evaluation of Stirling
partition numbers for negative arguments. They are no longer
zero, but become rational numbers.

I. INTRODUCTION

Among the remarkable sequences of numbers with impor-
tant combinatorial significance one can count the sequences
of Stirling numbers. These numbers were first introduced by
James Stirling in [13] to express the connection between the
ordinary powers and the factorial powers. In older literature,
they are called Stirling numbers of the first kind and second
kind. A modern notation for these numbers follows Knuth’s
suggestions [10]. He proposed the notations{

n

m

}
≥r

and
[
n

m

]
≥r

for respectively Stirling Partition numbers (Stirling numbers of
the second kind) and Stirling Cycle numbers (Stirling numbers
of the first kind). These notations in the special case r = 1
were first suggested by Karamata in [8].

The definitions used in this paper give all numbers as non-
negative, again following Knuth, in contrast to earlier defini-
tions [1], [2]. The names reflect the combinatorial significance
of the numbers, and the notations are inspired by the similar
notation for the binomial coefficients.

We describe a new implementation of Stirling cycle num-
bers in MAPLE, which is faster than the existing implementa-
tion in the combinat package. The existing implementation
does not use recurrence relations, but expands a polynomial.
The current MAPLE functions have names stirling2, for
Stirling partition numbers and stirlingl, for signed Stir-
ling cycle numbers.

Following a challenge by Knuth, several authors suggested
generalizations of Stirling numbers to non-integral arguments
[12], [5]. The widely accepted generalization [5] allows Stir-
ling numbers to be extended to complex arguments. The

proposal leaves the value of
{
0
0

}
undecided, and we discuss

possible values here.

II. DEFINITIONS AND PROPERTIES FOR r = 1

We begin with the case r = 1, which has been the traditional
meaning given to Stirling numbers.

Definition II.1. The Stirling partition number
{
n
k

}
is the

number of ways to partition a set of n objects into k nonempty
subsets.

Definition II.2. The Stirling cycle number
[
n
k

]
is the number

of permutations of n objects having k cycles.

Stirling numbers satisfy the recurrence relations{
n+ 1

k

}
=k

{
n

k

}
+

{
n

k − 1

}
, (1)[

n+ 1

k

]
=n

[
n

k

]
+

[
n

k − 1

]
, (2)

similar to the one satisfied by the binomial coefficients(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.

The identities (1) and (2) hold for all integers n and k (positive
or negative). The boundary conditions{

k

k

}
=

[
k

k

]
= 1 for k > 0 ,{

n

0

}
=

[
n

0

]
= δ0n for n > 0 ,

where δ0n is the Kronecker delta, lead to unique solutions for
all k, n integers. The Stirling cycle numbers and the Stirling
partition numbers are connected by the remarkable law of
duality {

n

k

}
=

[
−k
−n

]
,

which is valid for all k, n integers. Other special values are{
n

1

}
= 1 , and

[
n

1

]
= (n− 1)! . (3)

For n, k > 1, it is possible to write Stirling partition numbers
as a sum over binomial coefficients:{

n

k

}
=

1

k!

k∑
j=1

(
k

j

)
(−1)k−jjn . (4)



This can be extended to cycle numbers by using the identity

(−1)n+k

[
n

k

]
=

n−k∑
h=0

(−1)h
(
n− 1 + h

n− k + h

)(
2n− k
n+ h

){
n− k + h

h

}
. (5)

The original definitions used by Stirling are important. Using
the ‘falling’ and ‘rising’ notation of Knuth, we can write:

zn :=z(z − 1)(z − 2) . . . (z − n+ 1)

=
∑
k

[
n

k

]
(−1)n−kzk . (6)

zn :=z(z + 1)(z + 2) . . . (z + n− 1)

=
∑
k

[
n

k

]
zk . (7)

III. ASSOCIATED STIRLING NUMBERS

For extended discussions of associated Stirling numbers, we
refer to [2], [7].

Definition III.1. The number
{
n
m

}
≥r gives the number of

partitions of a set of size n into m subsets, each subset having
a cardinality ≥ r.

Definition III.2. The number
[
n
m

]
≥r gives the number of

permutations of n objects into m cycles, each cycle having
a cardinality ≥ r.

In [2, pp 221-2],
{
n
m

}
≥r is called ‘r-associated Stirling

number of the second kind’. We abbreviate this nomenclature
to ‘Stirling r-partition number’. Likewise,

[
n
m

]
≥r is a Stirling

r-cycle number (c.f. [2, p 256]). Obviously for r = 1 we return
to simple Stirling numbers.

We have recurrence relations{
n+ 1

k

}
≥r

= k

{
n

k

}
≥r

+

(
n

r − 1

){
n− r + 1

k − 1

}
≥r

, (8)[
n+ 1

k

]
≥r

= n

[
n

k

]
≥r

+ nr−1
[
n− r + 1

k − 1

]
≥r

. (9)

Note that n0 = 1. The boundary cases are{
n

1

}
≥r

= 1 , n ≥ r , (10)[
n

1

]
≥r

= (n− 1)! , n ≥ r , (11){
kr

k

}
≥r

=
(rk)!

(r!)k k!
, k ≥ 1 , (12)[

kr

k

]
≥r

=
(rk)!

rkk!
, k ≥ 1 . (13)

K

N

[
n
k

]
[
N
N

]
= 1

[
N
1

]
= (N − 1)!

Fig. 1. Calculating Stirling cycle numbers
[n
k

]
. The 3 solid circles illustrate

the calculation of the recurrence relation. The larger circle is calculated from
the values of the 2 smaller circles. The case n > 2k is illustrated, showing
the 3 regions in which numbers are evaluated.

K

N

[
N
N

]
= 1

[
N
1

]
= (N − 1)!

Fig. 2. Calculating Stirling cycle numbers for the case n < 2k. The three
regions used in the calculation are shown.

There are no known analogues of (4) or (6) for associated
Stirling numbers. Instead we shall utilize the generating func-
tions (

ez −
r−1∑
m=0

zm

m!

)k

= k!
∑
n≥0

{
n

k

}
≥r

zn

n!
, (14)

(
ln

1

1− z
−

r−1∑
m=1

z

m

)k

= k!
∑
n≥0

[
n

k

]
≥r

zn

n!
. (15)

IV. COMPUTING STIRLING NUMBERS (r = 1)

At present, the case r = 1 is implemented in MAPLE 2015,
as part of the combinat package. Stirling partition numbers
are computed by the function stirling2 using (4), for
n, k > 0. As well as being an explicit sum over k+1 terms, the
formula contains the factorial function, which is implemented
in the Maple kernel and is evaluated quickly. This method does
not generalize to associated numbers r > 1, but for r = 1 is
very fast, and is not considered further.

Stirling cycle numbers are computed by stirling1 using
(6); in MAPLE library code, this is written



stirling1:= (n,k)->
coeff(mul(z-m,m=0..n-1),z,k);

If fact the implementation in Maple works a little differently
from this. For any given n, the function computes all n − 1
coefficients of the polynomial, or equivalently all

[
n
k

]
for fixed

n and 0 ≤ k ≤ n, and stores them in cache memory. Thus
after one Stirling number is requested, subsequent requests
for another number with the same n, but differing k can be
returned immediately.

We compare computation of Stirling cycle numbers com-
puted by four methods.

1) equation (5).
2) Maple using (6).
3) equation (15).
4) equation (2).

A. Stirling cycle numbers by recurrence for 0 ≤ k ≤ n
To calculate

[
n
k

]
, the program computes only those ele-

ments which are needed for its evaluation, according to the
recurrence relation. Thus, in coordinates (N,K), these are the
pairs inside the parallelogram delimited by the lines N = K,
N = K + k, K = 0, and K = k. Notice that, when k is
close to 0 or n, the number of pairs computed becomes of
order n, because the area of the parallelogram is of order n.
(By ‘of order n’ we mean that the number of pairs will be
approximately linear in n, with only weak dependence on k.)

When k approaches n/2, more pairs are computed, and so
the algorithm is slower. The worst case is when k is closest
to n/2. Then our algorithm computes a number of pairs of
order n2, because the area of the parallelogram is of order
n2. (The number of pairs will be approximately quadratic in
n with a weak dependence on (k − n/2).) Our algorithm is
always better than the algorithm existing in MAPLE, even in
the case k = bn/2c. MAPLE’s algorithm is always of order n2

because the number of arithmetic operations that are required
to compute the coefficients of the polynomial (6)) (of order n2

arithmetic operations are done in order to compute, so when
k is farther from n/2, the difference between our algorithm
and MAPLE’s increases. The computation works bottom-up,
starting with the known boundary values for

[
n
n

]
and

[
n
1

]
and

considers two cases depending on whether n > 2k or not. In
either case, three subcases are considered. For example, when
n > 2k, the algorithm computes as follows:
• the pairs [i, j], 1 ≤ i ≤ k, 1 ≤ j ≤ i,
• the pairs [i, j], k + 1 < i < n− k + 1, 1 ≤ j ≤ k, and
• the pairs [i, j], n− k + 2 ≤ i ≤ n, i+ k − n ≤ j ≤ k.

On the other hand, if n ≤ 2k, we compute as follows:
• the pairs [i, j], 1 ≤ i ≤ n− k, 1 ≤ j ≤ i,
• the pairs [i, j], n − k + 1 < i < k, i − n + k ≤ j ≤
i+ n− k − 1, and

• the pairs [i, j], k + 1 ≤ i ≤ n, i+ k − n ≤ j ≤ k.
The two cases are illustrated in figures 1 and 2. For the
transition case n = 2k, a third case could be added, but the
efficiency gains would be negligible. Our algorithm uses only
a vector of length k to store all pairs computed. We can do

that because
[
n
k

]
depends only on the pairs in the level below,

that is, with the first component equal to n− 1.

B. Testing

Maple procedures based on the above approach were first
checked against the library code in MAPLE 2015, taking
into account that stirling1 returns signed values of cycle
numbers, whereas the present code returns unsigned values.
Then timing tests were made on all 4 methods.

It is well known that the speed of execution in Maple
depends on many implementation-specific considerations, in
addition to the underlying efficiency of the algorithm. For
example, since the Maple kernel is compiled code, but the
library is interpreted code, a slower algorithm running in the
Maple kernel can out-perform a theoretically faster algorithm
running in library code. Also, an algorithm (or a test program)
that allows Maple to utilize its remember facility may
run faster than one that does not. Our tests endeavoured
to concentrate on algorithmic differences, rather than effects
specific to Maple. For any specific computational engine, a
full assessment of the methods might well take into account
the possibilities of taking advantage of special features.

Since Maple’s implementation computes all
[
n
k

]
for a given

n, the running time will be independent of k. Further, since
the values are stored in memory, requests to compute multiple
values of k for fixed n will take no additional time. It is
possible to force Maple to forget stored values, but it is simpler
to fix k and consider changes in n.

We compared methods by computing[
n

100

]
for 400 < n ≤ 500 .

The large values of the arguments were chosen because the
computer used was running an Intel i7 processor running at 2.4
GHz, and smaller arguments made timing difficult. The value
of the second argument was chosen k = 100 so that methods
(2) and (5) were each running near their worst case. Each test
was run 4 times and the timings added. The comparative times
are given in table I.

It is also interesting to see the profile of the different meth-
ods computing

[
n
k

]
for fixed n and varying k. As mentioned

above, Maple computes and remembers all values, so that case
is omitted. The method based on recurrence has its worst case
at n/2 as explained in section IV-A. Method (5) is faster for
larger k while (15) is slower for large k.

C. The case k > n > 0

For k > n we can rewrite the recurrence as

n

[
n

k

]
=

[
n+ 1

k

]
−
[

n

k − 1

]
.

Now we can start with the case k = n+ 1 and compute

n

[
n

n+ 1

]
=

[
n+ 1

n+ 1

]
−
[
n

n

]
.



TABLE I
TIMINGS IN SECONDS OF COMPUTATIONS OF STIRLING CYCLE NUMBERS.
COLUMN HEADINGS GIVE THE NUMBER OF THE EQUATION BEING USED.
EACH TIME IS THE SUM OF 4 MEASUREMENTS. FOR REASONS GIVEN IN

THE TEXT, THE NUMBERS TESTED WERE
[ n
100

]
. THE COMPUTER USED WAS

A LENOVO YOGA RUNNING INTEL I7 AT 2.4 GHZ.

n
Method (6) (2) (5) (15)

410 0.469 0.343 7.531 61.312
420 0.577 0.702 8.266 67.252
430 0.609 0.314 8.406 71.624
440 0.595 0.405 8.968 76.252
450 0.672 0.563 9.250 82.560
460 0.812 0.501 10.469 87.188
470 0.656 0.420 10.515 91.564
480 0.844 0.455 11.361 96.688
490 0.765 0.672 11.750 103.372
500 0.844 0.469 12.234 112.500

TABLE II
TIMINGS IN SECONDS OF COMPUTATIONS OF STIRLING CYCLE NUMBERS.

THE TABLE SHOWS TIMINGS FOR CALCULATING
[500

k

]
FOR VARIOUS k.

THE DATA ARE THE SUM OF 4 RUNS. FOR REASONS EXPLAINED IN THE
TEXT, MAPLE’S TIMINGS ARE NOT GIVEN.

k
method (2) (5) (15)

0 0. 9.985 0.060
50 0.047 9.360 48.876

100 0.047 7.218 54.876
150 0.063 5.360 65.248
200 0.078 4.078 58.624
250 0.078 2.781 68.188
300 0.078 2.016 65.940
350 0.063 0.952 72.124
400 0.046 0.408 58.748
450 0.032 0.092 57.816
500 0. 0. 69.124

The boundary condition for k = n however makes the right
side zero and therefore Stirling cycle numbers are zero for all
k > n > 0.

The same conclusion applies to Stirling partition numbers,
since

k

{
n

k

}
=

{
n+ 1

k

}
−
{

n

k − 1

}
.

Again starting from k = n, we see that the boundary condition
implies zero for k > n > 0.

V. COMPUTING ASSOCIATED STIRLING NUMBERS

Associated Stirling numbers have yet to be implemented in
either MAPLE or MATHEMATICA. In addition to their obvious
combinatorial applicability, they have also been found to occur
in other contexts, such as series expansions for the Lambert
W function [4]. Implementations will therefore be useful to
numerous people. The methods used by MAPLE for simple
Stirling numbers do not extend to associated numbers, and so
we use recurrence relations (8) and (9).

The two cases identified for r = 1 Stirling numbers apply
to the new situation. Figure 3 shows the case n > 2rk. The
two vertical lines defining the 3 regions are at N = rk and

K

N

[
n
k

]
≥r[

rK
K

]
≥r

[
N
1

]
≥r = (N − 1)!

Fig. 3. Calculating Stirling cycle numbers
[n
k

]
≥r

. The 3 solid circles illustrate
the calculation of the recurrence relation. The larger circle is calculated from
the values of the 2 smaller circles. The case n > rk is illustrated, showing
the 3 regions in which numbers are evaluated.

N = n− (k − 1)r. The sloping lines in the figure have slope
1/r. A change from the r = 1 case is that now it is not
possible to confine the intermediate storage to a vector, and
instead a matrix of all computed values must be used.

A. Testing associated Stirling numbers

As mentioned above, neither MAPLE nor MATHEMATICA
have implementations with which to compare our programs.
We have programmed the recurrence relations, as described
above, and the generating functions. Thus, Stirling r-partition
numbers can be computed as

StirRPartGen:= proc(n,k,r) local s,t,z,p;
s:= add(zˆp/p! ,p=0 .. r-1) ;
t:=series( (exp(z)- s)ˆk, z=0, n+1 );
n! * coeff(t,z,n)/k! ;
end proc;

and Stirling r-cycle numbers by

StirRCycleGen:= proc(n,k,r) local s,t,z,p;
s:= add(zˆp/p ,p=1 .. r-1) ;
# Note: for r=1, s=0
t:=series( (ln(1/(1-z))- s)ˆk,z=0,n+1);
n! * coeff(t,z,n)/k! ;
end proc;

Timings were made of evaluations of[
500

k

]
≥2

,

[
500

k

]
≥3

,

[
500

k

]
≥4

,

for various k. The lengths of loops used in computing the
recurrence relations vary with k and r. This is reflected in the
variations in the timings. The generating function method is
much slower, for example

[
400
40

]
≥5 is 829 decimal digits and

takes 2.98 seconds by generating function and 0.031 seconds
by recurrence relation. The generating-function method is not
shown in the timings.



TABLE III
TIMINGS IN SECONDS OF COMPUTATIONS OF STIRLING r-CYCLE

NUMBERS. THE TABLE SHOWS TIMINGS FOR CALCULATING
[500

k

]
≥r

FOR

VARIOUS k AND r. THE DATA ARE THE SUM OF 10 RUNS.

k
method

r = 2 r = 3 r = 4

10 0.158 0.109 0.157
20 0.280 0.424 0.234
30 0.607 0.358 0.345
40 0.628 0.797 0.342
50 0.735 0.469 0.610
60 0.606 0.546 0.984
70 0.799 0.844 0.422
80 0.655 0.672 0.407
90 0.736 0.591 0.623
100 1.311 0.564 0.611
110 1.016 0.768 0.247
120 0.968 0.499 0.239

VI. MAPLE-SPECIFIC CONSIDERATIONS

Maple offers the possibility of a function remembering the
results of calculations. This has already been noted above in
the implementation of Stirling cycle numbers in Maple’s func-
tion stirling1. This can be done by adding the following
options to a function declaration:
• option remember: This option allows a remember

table to be created by the function. Each time the function
returns a value, an entry is created in its remember table,
and then if the function is called later with the same
arguments, the result is retrieved from the table, rather
than being recomputed. The table can grow as required
and is not limited in size.
Entries in the table can be created by other means also.
If a function is assigned a value, then the value is added
to the table. This is how stirling1(n,k) remembers
all values for a given n, regardless of which value of k is
requested by the user; internally all values are assigned.

• option cache: This option is similar to remember,
with the important difference that a maximum size for
the table is specified. Once the table reaches its specified
maximum size, later values are added to the table and
earlier ones are removed to make room. The default value
is 512 elements. There are distinctions between temporary
and permanent elements which are described in the Maple
help pages.

• option system: This option allows the remember
table to be erased any time there is a garbage collection.
The default behaviour, i.e. if this option is not present in
a function declaration, is for remember tables to survive
garbage collection.

Therefore, in implementing Stirling numbers, a programmer
can choose how many numbers to remember. A knowledgable
user then has the possibility of computing the largest Stirling
number first, for efficiency. Another possibility is seen in
the Maple function bernoulli. This function can com-
pute more values than actually requested. Thus a call to
bernoulli(1000) will on a quad core computer result

in Bernoulli numbers for arguments 1002, 1004, 1006 being
calculated and stored, unless the option singleton is used.
It is interesting that these ideas are seen in the existing Maple
implementation of stirling1 but not stirling2.

VII. STIRLING NUMBERS FOR COMPLEX ARGUMENTS

Flajolet and Prodinger [5] have proposed an extension of
Stirling numbers to complex arguments. For Stirling partition
numbers, they wrote{

x

y

}
=
x!

y!

1

2πi

∫
H

(ez − 1)y
dz

zx+1
(16)

=
Γ(x)

Γ(y)!

1

2πi

∫
H
ez(ez − 1)y−1

dz

zx
(17)

where the second form is obtained by integration by parts. The
contour H is a Hankel contour, which starts at −∞− 0i (i.e.
below the negative real axis), circumscribes the origin without
crossing the negative real axis and ends at −∞ + 0i. The
negative real axis is never crossed because for general values
of x, y that axis will be a branch cut for the integrand. For
positive integers x, y, the contour collapses to a circle going
anti-clockwise around the origin, and hence is the standard
construction for the coefficients of a Taylor series.

It has been shown [5] that in general (17) implies two
well known identities, derived initially for positive integral
arguments.{

x

y

}
= y

{
x− 1

y

}
+

{
x− 1

y − 1

}
, (18){

x

k

}
=

1

k!

k∑
j=1

(
k

j

)
(−1)k−jjx , for k ∈ N . (19)

Obviously (18) is the generalization of (1). It was proved in
[5] for <x > 1 and then generalized by the uniqueness of
analytic continuation. The identity (19) was proposed in [12]
as the basis for generalizing Stirling numbers.

A. Value at the origin

The traditional definition of Stirling numbers specifies{
0
0

}
= 1. Once the various identities are generalized to non-

integer arguments, it is not possible to retain all identities
everywhere – specifically at the origin. Thus if we start with
(19), we have {

x

1

}
=

(
1

1

)
(−1)0(1)x = 1 .

Thus this identity gives
{
0
1

}
= 1. Now consider (18).{

1

1

}
=

{
0

1

}
+

{
0

0

}
Since the left side is 1, we cannot have both

{
0
1

}
and

{
0
0

}
= 1.

The same contradiction is obtained from the identities{
n

n

}
= 1 , (20){

n

0

}
= 0 . (21)



If these are to hold true when n ceases to be integral, then
substituting n = 0 in these equations gives a contradiction.
One of them must take precedence for the determination of{
0
0

}
.

The integral definition (17) shows the same behaviour. It
has been shown that [14]

lim
x→0

{
x/n

x

}
= n .

Thus the origin is a singular point and the value there is a
matter of convention.

B. Consequences of different assumptions
We consider here the consequences of retaining the recur-

rence relation (18), and allowing different conventions for
{
0
0

}
.

Under the definition
{
0
0

}
= 1, we have seen

{
0
1

}
= 0. This in

turn implies
{
0
k

}
= 0 for all k > 0, and by further extension{

n
k

}
= 0 for all k > 0, n < 0.

In contrast, under the definition
{
0
0

}
= 0, we have from the

recurrence relation{
0

1

}
=

{
1

1

}
−
{

0

0

}
= 1 .

From this we have 2
{
0
2

}
=
{
1
2

}
−
{
0
1

}
= −1. Thus by

induction, it is easy to establish{
0

k

}
=

(−1)k+1

k!
, for k > 0 .

To proceed further, we notice that the recurrence relation for
partition numbers can be written

k

{
n

k

}
+

{
n

k − 1

}
=

{
n+ 1

k

}
.

If n is regarded as fixed and
{
n+1
k

}
is regarded as known,

then the recurrence relation can be solved. We therefore state
the lemma

Lemma. The recurrence relation mSm +Sm−1 = gm has the
solution

Sm =
(−1)m

m!

S0 +

m∑
j=1

(−1)j(j − 1)! gj

 .

Proof. Direct substitution in the recurrence relation.

We now apply this to

k

{
−1

k

}
+

{
−1

k − 1

}
=

{
0

k

}
=

(−1)k+1

k!

giving {
−1

k

}
=

(−1)k

k!

{
−1

0

}
+

(−1)k+1

k!

k∑
j=1

1

j

=
(−1)k

k!

{
−1

0

}
+

(−1)k+1

k!
Hk ,

where Hm is a harmonic number. It seems natural to continue
with

{−1
0

}
= 0, giving{

−1

k

}
=

(−1)k+1

k!
Hk .

VIII. CONCLUSIONS

We have considered two computational problems in this
paper. The first problem is a more efficient algorithm for
evaluating the known Stirling Cycle numbers with positive
arguments. For negative arguments there are no commonly
accepted definitions for either cycle or partition numbers. We
have therefore explored different possibilities. The advent of
proposals for generalizing Stirling numbers to complex argu-
ments has pointed out the possibility that numbers previously
considered zero could become nonzero, and new symmetries
in the definitions become possible.

Stirling numbers are commonly defined by recurrence rela-
tions and boundary conditions. Some of these boundary con-
ditions are determined from the combinatorial interpretation
of the numbers, while others are matters of convention. This
work has pointed out that different conventions from those
used until now can lead to interesting new behaviour.

REFERENCES

[1] Abramowitz, M., Stegun, LA., editors, Handbook of Mathematical
Functions, U.S. National Bureau of Standards, 1964.

[2] Comtet, L., Advanced Combinatorics, D. Reidel Publishing Co., Dor-
drecht, Holland, 1974.

[3] Corless, R.M., Essential Maple 7. A guide for Scientific Progammers,
Springer-Verlag, Berlin, second edition, 2004.

[4] Corless, R.M., Jeffrey, D.J., Knuth, D.E., A sequence of Series for the
Lambert W Function, Proceedings of ISSAC 1997, ed. W.W. Kuechlin,
ACM Press, 1997.

[5] Phillipe Flajolet & Helmut Prodinger, On Stirling Numbers For Complex
Arguments And Hankel Contours, SIAM J. Discrete Math., Vol. 12, No.
2, pp. 155–159, 1999.

[6] Graham, R.L., Knuth, D.E., Patashnik, 0., Concrete Mathematics,
Addison-Wesley Publishing Co., Reading, Massachusetts, 1994, second
edition.

[7] Howard, F.T., Associated Stirling numbers, Fibonacci Quart., vol 18, pp.
303-315, Dec. 1980.

[8] Karamata, J., Theoreme sur la sommabilite exponentielle et d’autres
sommabilites rattachant, Mathematica, Cluj, Romania, vol. 9, 1935, 164-
178.

[9] Knuth, D.E., The Art of Computer Programming, vol. 1, Reading,
Massachusetts, Addison-Wesley, 1997, third edition.

[10] Knuth, D.E., Two Notes on Notation, The American Mathematical
Monthly, vol. 99, 1992, 403-422.

[11] Knuth, D.E., Convolution Polynomials, The Mathematica Journal, vol.
2, 4, 1992, 67-78.

[12] Sprugnoli, R. and Del Lungo, A., Semireal Stirling Numbers of the
second kind. Technical report, Universitá di Firenze, 1994.

[13] Stirling, J., Methodus Differentialis, London, 1730.
[14] Corless, R.M., Jeffrey, D.J., Wang, Yang, Numerical Evaluation of

Contour Integrals for Computation of Stirling Numbers. OPSFA 13,
NIST, Washington 2015.


