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Abstract

The definition of the LU factoring of a matrix usually requires that the matrix be invertible. Current software
systems have extended the definition to non-square and rank-deficient matrices, but each has chosen a different
extension. Two new extensions, both of which could serve as useful standards, are proposed here: the first combines
LU factoring with full-rank factoring, and the second extension combines full-rank factoring with fraction-free
methods. Amongst other applications, the extension to full-rank, fraction-free factoring is the basis for a fraction-
free computation of the Moore—Penrose inverse.

1 Introduction

Mathematical software systems occasionally take the initiative away from mainstream mathematics and create exten-
sions of mathematical theory. The example of interest here concerns the LU factoring of matrices. Many textbooks
restrict their definitions to square invertible matrices, and early versions of Maple, Mathematica and Matlab
followed the textbooks by implementing LU-factoring routines that gave error messages for non-square matrices, and
also gave error messages if the square matrix were singular.

More recent versions of these software systems have been leading the way in extending the definition of LU
factoring, however, they have been leading ‘madly off in all directions’ [18]. Recent versions of Matlab and Maple
will now return results for all matrices, but not the same results. For example, two sets of LU factors for the same
matrix are given below; the first line shows the factors returned by Matlab 7.9 and the second shows those returned
by Maple 13.

5 10 15 20
−1 −6 −19 −16
1 5 15 19
5 6 −1 −12
4 9 16 29

 =


1 0 0 0

−0.2 1 0 0
0.2 −0.75 1 0
1.0 1.0 0 1
0.8 −0.25 0 −0.5



5 10 15 20
0 −4 −16 −12
0 0 0 6
0 0 0 −20

 , (1)

=


1 0 0 0 0

−1/5 1/5 0 0 0
1/5 −3/20 −1/20 0 0
1 1/5 1/6 1 0
4/5 −1/20 −1/12 0 1



5 10 15 20
0 −20 −80 −60
0 0 0 −120
0 0 0 0
0 0 0 0

 . (2)

Note that the matrix was chosen so that the programs would not interchange the rows, and hence the permutation
matrix is not shown, being an identity matrix.

Since the idea of LU factoring is not sufficiently well defined to give a unique definition, it is hardly surprising that
different definitions have been adopted by different systems. In the face of an incomplete definition, standardization
becomes desirable. However, even for invertible matrices, three variations are commonly used for LU factors, since
for any diagonal matrix D, we have LU = (LD−1)(DU). The three variations are named after Cholesky, Doolittle
and Crout1. Historically, Cholesky [6] and Doolittle [11] considered only symmetric systems of equations, because

1For biographical notes on André-Louis Cholesky (1875–1918), see [6]; on Myrick Hascall Doolittle (1830–1913), see [13]; on Prescott
Durand Crout (1907 – 1984), see [1].
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both were interested in least-squares corrections used in surveying, and it was only later that Crout [9] included
non-symmetric equations in his treatment. Turing wrote an influential paper [23] stating LU factoring in its modern
matrix notation, and explicitly connecting it to Gaussian elimination. Dwyer [12] also credits Banachiewicz[3] with
anticipating matrix factoring ideas2.

The first part of this paper defines a form for LU factors that is more useful than the variations at present
offered by software systems, or books. The second part takes up fraction-free algorithms developed for linear system
solving [14, 4]. There have been various attempts to apply the fraction-free idea to LU factoring [7, 19, 24]. Here we
follow [24] and define a combined full-rank and fraction-free form.

2 Full-rank factoring and LU

Given a rectangular matrix A that is m×n and has rank r, a full rank factoring of A consists of two matrices F and
G having dimensions m× r and r× n such that A = FG. An introduction to the full-rank factoring of a matrix can
be found in [21]. Clearly, full-rank factoring is not unique.

In the context of exact computation, an obvious way to find the rank of a matrix is to use Gaussian elimination
to reduce the matrix to row-echelon form and then to count the nonzero rows. Numerical linear algebraists will
immediately point out that rank is difficult to calculate using approximate arithmetic, and that methods other than
Gaussian elimination are preferred for the estimation of rank. This is an important point for implementation, but
the general proposal here can be presented using Gaussian elimination as the basis. Since Gaussian elimination is
equivalent to LU factoring [23], it is natural to extend LU factoring to non-square or rank-deficient matrices by using
Gaussian elimination to obtain lower- and upper-triangular matrices L and U , and then to discard all zero rows in
U and corresponding columns of L. For example, using Maple’s LU factors given in (2), we discard the elements
shown in bold to obtain a full-rank LU factoring.

One characteristic of a rank-deficient matrix is the possibility that in the factor U an echelon form will replace
the purely triangular form of an invertible matrix, as can be seen in (2). By reordering the columns of U we can
recover the more convenient form, and if a computer is performing the factoring, we can reasonably request the
software to complete this small extra task for us. This suggests the following theorem, which is stated in a form that
would be equally suitable for exact computation or approximate computation, provided again, we note the difficulty
of computing rank numerically.

Theorem 1 Given a matrix A with dimensions m× n and rank r, there exists a factoring

A = PrLUPc , (3)

where Pr is an m ×m permutation matrix, L is an m × r lower triangular matrix, U is an r × n upper triangular
matrix and Pc is an n× n permutation matrix. Furthermore, the structure of the matrix L is

L =

(
L
M

)
,

where L is an r × r lower triangular invertible matrix, and the structure of U is

U =
(
U V

)
,

where U is r × r, upper triangular, and invertible. Both M and V might be null.

Proof. This theorem is a special case of theorem 2, and it is proved as a corollary to that theorem in §3.1. �

2.1 Application to a generalized inverse

The generalized inverse of a matrix A is any matrix X satisfying AXA = A [5]. In terms of the factoring (3), a
generalized inverse (it is not unique) is

X = PT
c

(
U−1L−1 0

0 0

)
PT
r .

This also satisfies the equation XAX = X, which is an alternative definition of a generalized inverse.

2Some historical quotations are given in [16, Chap. 9].

2



Jeffrey

2.2 Application to analyzing rectangular systems

An application of the factoring that exists in any first course on matrix theory is the standard topic is deciding how
many solutions there are to a given system of equations. Most books begin by listing three possibilities [2], namely,
a system can have no solution, one solution or an infinite number of solutions; after that, they treat particular
examples by reducing an augmented matrix to row-echelon form, and then apply an ad hoc analysis. With the new
LU factors, the analysis is quick. Suppose there are m equations in n unknowns in the usual form Ax = b, with A
having rank r. We obtain the full-rank LU factors:

Ax = PrLUPcx = b .

We first separate the bound and free variables, by writing Pcx = [xb xf ]
T , with xb being the r bound variables and

xf the n− r free variables. We also separate the right-hand side into corresponding constants: P−1
r b = [bb bc]

T . Now
we can decide whether solutions exist by checking the consistency condition,

ML−1bb = bc . (4)

If this equation is satisfied, then the system is consistent, and we can write the bound variables in terms of the free
variables as

xb = (LU)−1bb − U−1Vxf .

Otherwise, there is no solution.

3 Fraction-free methods and LU

Fraction-free methods for the solution of systems of linear equations are well-established [4, 14], but the combination
of fraction-free methods and LU factoring is more recent [19, 7, 24]. Here, we combine the full-rank factoring of the
previous section with a fraction-free form. We extend the form defined in [24], rather than that in [7], because the
matrices have smaller entries. The main theorem is the following.

Theorem 2 A rectangular matrix A with elements from an integral domain I, having dimensions m× n and rank
r, may be factored into matrices containing only elements from I in the form

A = PrLD
−1UPc = Pr

(
L
M

)
D−1

(
U V

)
Pc , (5)

where permutation matrix Pr is m×m, permutation matrix Pc is n× n, L is r × r, lower triangular and invertible.

L =


p1
l21 p2
...

...
. . .

lr1 lr2 · · · pr

 ,

where the pi ̸= 0 are the pivots in a Gaussian elimination. M is (m − r) × r and could be null. D is r × r and
diagonal:

D = diag(p1 , p1p2 , p2p3 , . . . pr−2pr−1 , pr−1pr) .

U is r × r and upper triangular, while V is r × (n− r) and could be null.

U =


p1 u12 · · · u1r

p2 · · · u2r

. . .
...
pr

 .

Proof. The standard treatments of fraction-free methods use determinants to obtain explicit formulae for the
quantities involved. Rather than reproduce that approach, we here modify the standard recursive treatment of
Gaussian elimination. The presentation uses an enhanced version of block-matrix notation for additional clarity.
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The usual notation does not distinguish visually between the shapes of the blocks, but it helps to have reminders of
which blocks are rows and which columns. An m× n matrix A will be written as

A =

a11 a12 a13

a21 a22 a23

a31 a32 A33

 , (6)

where the elements a11, a12, a21, a22 are 1 × 1 scalars; the column vectors a31,a32 are (m − 2) × 1; the row vectors
a13,a23 are 1× (n− 2) and the submatrix A33 is (m− 2)× (n− 2).

Gaussian elimination as multiplication by elementary matrices is well known and treated at various levels of
sophistication in everything from introductory to advanced texts [15, 22, 10]. Here we present a fraction-free variation
which uses cross multiplication to avoid fractions, together with an exact division to reduce the growth in the size
of elements. The fraction-free process requires that two steps be carried out explicitly, in order to see the complete
process. The steps in the iterative scheme will be denoted by superscripts in parentheses. Thus the initial matrix is

A, or A(1) with elements aij or a
(1)
ij .

We can assume that row and column reordering has ensured that the first pivot is p1 = a11. Transformation of
the first column is written

E1A =

 1 0 0

−a
(1)
21 p1 0

−a
(1)
31 0 p1I


a

(1)
11 a

(1)
12 a

(1)
13

a
(1)
21 a

(1)
22 a

(1)
23

a
(1)
31 a

(1)
32 A

(1)
33

 =

a
(1)
11 a

(1)
12 a

(1)
13

0 a
(2)
22 a

(2)
23

0 a
(2)
32 A

(2)
33

 .

Here A
(2)
33 = p1A

(1)
33 − a

(1)
31 a

(1)
13 , and similar formulae for the other elements. The second pivot, again supposing that

row and column permutations have been completed, is p2 = a
(2)
22 .

E2E1A =

1 0 0
1 0

−a
(2)
32 p2I


 1 0 0

−a
(1)
21 p1 0

−a
(1)
31 0 p1I


a

(1)
11 a

(1)
12 a

(1)
13

a
(1)
21 a

(1)
22 a

(1)
23

a
(1)
31 a

(1)
32 A

(1)
33


=

a
(1)
11 a

(1)
12 a

(1)
13

a
(2)
22 a

(2)
23

Â33

 . (7)

Here Â33 is an intermediate form. The well-known exact division is now established by expressing Â33 using elements
from A = A(1).

Â33 = a11 [(a11a22 − a12a21)A33 + (a21a32 − a22a31)a13 + (a12a31 − a11a32)a23] .

Since p1 = a11, the division Â33/p1 is exact and the result is denoted A
(3)
33 . The same exact division occurs on the

left of equation (7), as is seen by multiplying the elementary matrices together to obtain

E2E1 =

 1 0 0

−a
(1)
21 p1 0

a
(1)
21 a

(2)
32 − p2a

(1)
31 −p1a

(2)
32 p1p2I

 .

Since a
(1)
21 a

(2)
32 − p2a

(1)
31 = p1[a

(1)
21 a

(1)
32 −a

(1)
22 a

(1)
31 ], we can remove a factor p1 from the third row (in a partitioned sense)

of the matrices in the equation. That is, we can multiply by D−1
2 , where

D2 =

1
1

p1I

 .

Thus we get

D−1
2 E2E1A =


a
(1)
11 a

(1)
12 a

(1)
13

a
(2)
22 a

(2)
23

Â33/p1

 =


a
(1)
11 a

(1)
12 a

(1)
13

a
(2)
22 a

(2)
23

A
(3)
33

 . (8)
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The iterative procedure is more clearly seen if we write D1 = I and then (8) becomes

D−1
2 E2D

−1
1 E1A = A(3) . (9)

In words, step k of a fraction-free Gaussian elimination consists of a pivoting step (not shown), a cross multiplication
step and a division by the pivot from step k − 1.

The connection with LU factoring is now made, in a way similar to standard treatments, by inverting the matrices
Ek. We have

E−1
1 =

 1

−a
(1)
21 p1

−a
(1)
31 0 p1I


−1

=

 1

a
(1)
21 /p1 1/p1

a
(1)
31 /p1 0 I/p1

 .

The key new idea is now to write this as

E−1
1 =

 p1

a
(1)
21 1

a
(1)
31 0 I


p1

p1
p1I

−1

.

Including now all the matrices from the first two steps, we obtain p1

a
(1)
21 1

a
(1)
31 0 I


p1

p1
p1I

−1 1
p2

a
(2)
32 I

1
p2

p2I

−1 1
1

p1I

 ,

and completing the multiplications, we see

E−1
1 D1E

−2
2 D2 =

 p1 0 0
a21 p2 0

a31 a
(2)
32 I

p1 0 0
0 p1p2 0
0 0 p2I

−1

. (10)

In this form, the delayed division that led to (8) is now seen as limiting the occurrences of each pivot to two entries
in the diagonal inverse matrix. It is clear that we can now continue recursively for r steps to obtain

D−1
r Er . . . D

−1
1 E1A = A(r) . (11)

By assumption, A(r) has r non-zero rows, and the rest can be discarded. The extension of (10) gives the LD−1 of

the theorem, after trimming to r columns. We have lij = a
(j)
ij and uij = a

(i)
ij . Adding in the permutation matrices is

no different from the usual treatments [22, 16].

3.1 Corollary

Theorem 1 is obtained by combining either LD−1 together as L to obtain Doolittle LU factors, or D−1U together as
U to obtain Crout LU factors. If A is symmetric, then D can be combined symmetrically to obtain Cholesky factors.

3.2 Example

Returning to the example above, we now have the factoring
5 10 15 20
−1 −6 −19 −16
1 5 15 19
5 6 −1 −12
4 9 16 29

 = (12)


5 0 0
−1 −20 0
1 15 −120
5 −20 400
4 5 −200


5 0 0
0 −100 0
0 0 2400

−1 5 10 20 15
0 −20 −60 −80
0 0 −120 0



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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The above result was obtained using standard partial pivoting from numerical linear algebra. For exact computation,
a pivoting strategy based on looking for the smallest non-zero pivot is desirable [14]. This gives the factoring

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0
−1 −1 0
5 −15 120
5 −19 164
4 −11 80


1 0 0
0 −1 0
0 0 −120

−1 1 5 19 15
0 −1 3 −4
0 0 120 0



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

3.3 Application to fraction-free solving of rectangular systems

As in §2.2, rectangular systems can be checked for consistency and solved. The new feature is that the first steps
can be performed fraction-free. Given

Ax = Pr

(
L
M

)
D−1

(
U V

)
Pcx = b ,

We have a simple variation on the usual procedure. We solve first LD−1y = bb, where bb is defined in § 2.2. We
can see two ways that DL−1 is fraction-free. One is the proof given in [24] using determinants. The other way is to
note that DL−1 is just another way of writing the matrices in (11), suitably trimmed. The evaluation of U−1y must
introduce fractions.

3.4 Moore—Penrose inverse

The Moore—Penrose inverse can be expressed in terms of full-rank factors, and using the factors (5) we can arrange
matters so that most of the calculation is fraction free. It is shown in [5, 20] that if a matrix A has full-rank factors
A = FG, then the Moore-Penrose inverse A+ is given by

A+ = G∗(GG∗)−1(F ∗F )−1F ∗ ,

where the asterisk denotes Hermitian transpose. If we set F = PrLD
−1 and G = UPc, we can write

A+ = [PrL(UPcA
∗PrL)

−1UPc]
∗ ,

where the D matrix has disappeared from the calculation. The matrix UPcA
∗PrL can be computed within the

domain of A and its inverse computed by fraction-free methods. Using the second numerical example, we have

UPcA
∗PrL =

 6852 −14568 112288
−226 684 −6312
22920 −45000 330240

 .

A fraction-free inverse is equivalent to computing the adjoint and determinant of the matrix. The final result is

A+ =
1

3552948


103020 133534 −60579 142423 101249
113640 91774 −50787 186937 82889
−60540 −300574 99747 35633 −174689
34020 137214 −13797 −113337 136899

 .

4 Concluding remarks

The starting point for this paper was the existence of various ad hoc extensions to LU factoring. New or extended
mathematical definitions introduced by software systems present difficulties to the software users. They lack docu-
mentation. The output from the system might not be understood, because it will not be described in textbooks, and
as a consequence users may be unwilling to accept the result. Moreover, the lack of help could mean that users will
miss the point and advantages of the new form. The aims here have been to propose two standards and to provide
some documentation for them.

The treatment here has been directed towards exact computation, but the factoring should be useful in approxi-
mate systems also, although it would not be implemented in the same way as in exact systems. Pivoting, in particular,
will most likely be different. Earlier, the numerical software Matlab was included in the discussion. At present
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Matlab’s rank and rref commands will calculate the rank of a matrix using a tolerance, which can optionally be
set by the user. The algorithms used by the commands are different, and so the same tolerance can yield different
estimates of rank for the same matrix. The Matlab lu command, however, returns LU factors without using a
tolerance to force zero. The new factoring would require that the lu command act more like the rref command for
computations.

For symbolic systems, the rank could depend upon symbolic expressions, thus posing the usual dilemmas for
software designers [8]. However, in common with other matrix factorings [7], expressions that are potentially zero
will appear visibly in the results, alerting the user to possible special cases. The critical expressions will be those
appearing on the diagonals of the factors. It can be noted that the diagonal matrix appearing in (5) contains the
same information as the L an U matrices, and does not need separate examination; indeed, a system might not
bother to return it explicitly at all.

There is a useful comparison to be made between the treatment of LU factors defined here, and the treatment of
QR factors for non-square matrices [22]. For a matrix A, m×n with m > n, it is common to define either a “full” QR
factoring A = QR, with Q being m×m, or an “economy sized” factoring, in which Q is m×n. The possible factors
differ in that the R factor for the full case is padded with m−n rows of zeros. The additional m−n columns for the
full Q are chosen so that it is orthonormal, although since the additional columns multiply zeros, it remains a useful
convention not required by the factoring alone. It should be noted that, in contrast to the present definitions, the
dimensions of the Q and R matrices do not depend upon the rank of the matrix. A desire to work with invertible,
and thus square, matrices seems to be part of extended definitions in a number of places, including [7, 17], where
the L matrix is padded to make it invertible. The view here is that this is not necessary, and indeed misses an
opportunity.
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