
Computer Algebra

ÓÄÊ 519.61

Inde�nite integration as term rewriting:

integrals containing tangent

c⃝ 2012 ã. J. Hu, Y. Hou, A.D. Rich and D.J. Je�rey,

Department of Applied Mathematics, The University of Western Ontario

1151 Richmond St. London, Ontario, Canada N6A 5B7

E-mail: junruihu@gmail.com, yhou26@uwo.ca, Albert_Rich@msn.com, dje�rey@uwo.ca
Ïîñòóïèëà â ðåäàêöèþ

We describe the development of a term-rewriting system for inde�nite integration; it is also called a rule-based

evaluation system. The development is separated into modules, and we describe the module for a wide class of

integrands containing the tangent function.

1. Introduction

Programming styles in computer-algebra systems are
frequently described as either term-rewriting based, or
computationally based. For example, Mathematica is
widely recognized as a rewrite language [1], whereas
Maple is rarely described this way. The distinction
is mostly one of emphasis, since all available systems
include elements of both styles of programming. The
dichotomy can be seen more speci�cally in programming
to evaluate inde�nite integrals, also called primitives
or anti-derivatives. For symbolic integration, some of
the best-known approaches are computationally based.
Thus the Risch algorithm [8] and the Rothstein-
Trager-Lazard-Rioboo algorithm [9, 10, 5] are both
computational algorithms. These algorithms and others
like them are not universally applicable, however, and
for many integrals rule-based rewriting is needed and
has advantages, some of which we discuss below.

Doubts have been expressed about the viability of
large-scale term rewriting [2]; the present scheme is
more algorithmic and deterministic than earlier term
rewriting schemes, and we prefer the description rule-
based scheme for the integration scheme presented
here. A particular success of rule-based schemes is the
popularity of software that can display the steps of a
calculation. This is variously called `display step' or
`single step'. Examples of software o�ering this include
WolframAlpha and Derive, and many calculus
tutorial programs.

The rule-based integration scheme that is considered
here [7, 6] consists of a public-domain repository of
transformation rules for inde�nite integration, together
with utility �les that allow it to be utilized by various
computer-algebra systems. The repository is not a table
of integrals; it is a compact set of rules, much smaller
than a table covering the same domain. Also simple

correctness is not the only aim of the development. The
quality of integral expressions is judged by a number of
criteria, which are used to decide whether an integration
rule should be accepted. Assume that an integrand f(x)
has a proposed primitive F (x). Selection is based on
the following criteria, which are discussed further in the
next section.

• Correctness: we require F ′(x) = f(x).
• Simplicity: we seek the simplest form for an
integral. We adopt a pragmatic approach and aim
for the shortest expression length.

• Continuity: we aim to ensure that all of the
expressions for integrals are continuous on domains
of maximum extent [4].

• Æsthetics: we employ a number of principles to
select for mathematical beauty where possible.

• Utility: the rules should facilitate the afore-
mentioned `show-step' application. See Sec. 2.5.

• E�ciency: the path to a result should be as direct
as possible, and the set of rules should be compact.

A more detailed description of the repository is given
below.

2. Discussion of selection criteria

The following example allows us to discuss several
aspects of our overall aim. We compare 5 possible
expressions for an integral.∫ √

−2 tanx dx = −1
2 ln

(
2− 2 tanx− 2

√
−2 tanx

)
− arctan

(√
−2 tanx− 1

)
+ 1

2 ln
(
2− 2 tanx+ 2

√
−2 tanx

)
− arctan

(√
−2 tanx+ 1

)
, (1)
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∫ √
−2 tanx dx = (2)√

−Tan[x]
2
√
Tan[x]

(
−2ArcTan

[
1−

√
2
√
Tan[x]

]
+2ArcTan

[
1 +

√
2
√
Tan[x]

]
+ Log

[
1−

√
2
√
Tan[x] + Tan[x]

]
−Log

[
1 +

√
2
√
Tan[x] + Tan[x]

])
, (3)

= ln cosx+ ln(1 +
√
−2 tanx− tanx)

+ arctan
1 + tanx√
−2 tanx

, (4)

= − arctan

√
−2 tanx

1 + tanx
+ arctanh

√
−2 tanx

1− tanx
, (5)

= arctan
1 + tanx√
−2 tanx

+ arctanh
1− tanx√
−2 tanx

. (6)

In the above equations, expression (1) comes from
Maple 16; (3) comes fromMathematica 8; (4) to (6)
come from the present project. We now consider these
expressions under the headings listed above.

2.1. Correctness

With f and F denoting an integrand and primitive
as above, we note that the test F ′ = f requires
a de�nition of di�erentiation. Here, we choose it to
be complex di�erentiation. This is re�ected in the
absence of absolute values around the arguments of the
logarithm functions in the example. The debate between
computer-algebra users over∫

dx

x
=

{
lnx , Complex

ln |x| , Real
(7)

is of long standing. In the current repository, all
transformation rules are valid for complex quantities.
In the example the integrand itself becomes imaginary
for intervals (nπ, nπ + π/2) with n ∈ Z.
Note that the veri�cation of the test F ′ = f by

a computer-algebra system is not itself a trivial step.
Maple cannot complete a veri�cation of (4) in any
straightforward way, for example.

2.2. Simplicity

The last 3 expressions are clearly shorter and simpler
than the �rst two. A constant problem in computer-
algebra systems is expression swell, and every part of
such systems should be striving to keep results succinct.
This increases the utility of a system.
Integral expressions cannot necessarily be simpli�ed

automatically into their shortest forms. There are
two reasons for this. First, the shortest form may
di�er by a constant from the given expression, and

therefore algebraic manipulation alone cannot succeed
in �nding it. Secondly, branch cuts could make the given
expression di�er algebraically from the shortest form;
another way to say this is that the two expressions di�er
by a piecewise constant. Therefore an integration system
should aim to obtain the simplest form directly, since
algebraic simpli�cation is not likely to be successful.
This can be seen particularly in the results of Risch
integration, which are obtained without regard for
branch cuts.

2.3. Continuity

The integrand
√
−2 tanx is singular at x = nπ + π/2,

and is otherwise continuous. At x = nπ the function
changes from real to imaginary, but is continuous
at those points. Therefore expressions for its integral
should also be continuous except possibly at x = (n +
1/2)π. We see that expression (5) has discontinuities
at tanx = ±1. Therefore the other expressions are
preferred. Combining continuity with simplicity, we can
therefore reduce our choice of preferred expressions to
(6) and (4). An additional point to note is that the
integrand is integrable at its singular points, and one
could ask for the integral expression to be continuous
there. None of the expressions has a de�ned value at
x = nπ + π/2 and therefore the evaluation of de�nite
integrals with these endpoints must be evaluated as a
one-sided limit.
It should be further noted that requirements for

continuity and simplicity might con�ict. Consider a
di�erent example: the integral∫

x2 + 2

x4 − 3x2 + 4
dx = arctan

x

2− x2
, (8)

= arctan
(
2x+

√
7
)
+ arctan

(
2x−

√
7
)

. (9)

The discontinuous expression is shorter, and would be
judged simpler by most users. This is a simple example
using the Lazard-Rioboo algorithm [5]; as the degrees of
the polynomials grow, the di�erence in length between
the two expressions increases.

2.4. Æsthetics

Beauty is the �rst test. There is no permanent
place in the world for ugly mathematics.

� G. H. Hardy [3]

If we compare (4) and (6), we see that (6) uses two
related functions, namely arctan and arctanh. Although
we know that arctanh can be expressed in logarithms,
the look of (6) with its many symmetries has greater
mathematical beauty than the other expressions.
A similar principle concerns the relation between the

form of the integrand and the form of its integral.
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Consider the following example, which comes from
Maple 16.∫ √

2 tanx dx =

√
tanx cosx arccos (cosx− sinx)√

cosx sinx

− ln
(
cosx+

√
2
√
tanx cosx+ sinx

)
. (10)

In contrast to (1), also from Maple, this form introduces
a jumble of functions not seen in the integrand. Also the
obvious symmetry of x → −x which relates problems (1)
and (10) is not preserved in the answers. We prefer, then,
to echo as much as possible the functional forms seen in
the integrand.

2.5. Utility

The way in which rules are encoded will be re�ected
when a user single-steps through a derivation. Some
systems are happy to use many substitutions on the way
to the �nal expression. Although this re�ects the way
a human might solve the problem, it makes for di�cult
reading, since the user is probably not taking notes along
the way. A simple example is an integral of the form∫
f(ax + b) dx. Although a human might immediately

write y = ax + b and then work in y, we prefer to live
with the longer form, and save the user from having to
keep track of the substitutions.

3. Format for rules

Each entry in the repository has three functional parts,
which together de�ne a rule. The repository entries may
contain other information, such as rule derivations and
literature citations, which do not have a functional role.

1. The transformation. This maps an integral to
an expression which contains terms that are free
of integrals and terms containing new (simpler)
integrals.

2. Validity conditions. Since the integrals in part 1
usually contain parameters, these conditions ensure
the correctness of the transformation.

3. Simpli�cation conditions. These conditions ensure
that the transformation is desirable, meaning that
any new integral or integrals will lead, after
further transformations, to a solution of the original
problem.

An important design objective is that the conditions
de�ning the rules are mutually exclusive, meaning that
once parameters are speci�ed for any integrand, only
one set of conditions will evaluate to true, and therefore
only one rule can be applied to any particular case.
As an example, consider transformation (21) in the

appendix. The factor (m + n + 1) on the left side
must clearly be non-zero for the equation to act as

a transformation from left to right. Therefore the
condition m + n + 1 ̸= 0 must be listed in the validity
�eld of the rule. In addition, the transformation reduces
the exponent of T1 = tan(c + dx) from m to m − 1,
and clearly this requires m ≥ 1 in order to qualify
for a simpli�cation. Thus this becomes a condition in
the simpli�cation �eld. We can note in passing that the
case m + n + 1 = 0 does not invalidate the equation,
which now reduces to a simple exact integral, but simply
prevents the equation being used as a transformation.
A similar e�ect can be seen in transformation (18).

Here, the case C = 0 reduces the transformation to a
trivial identity.

4. Functions containing tangent

The new module for integration addresses functions of
the form

tanm(c+ dx)(a+ b tan(c+ dx))n

∗ (A+B tan(c+ dx) + C tan2(c+ dx)) ,

where a, b, c, d, A,B,C ∈ C and m,n ∈ R are arbitrary.
This expression will not always be integrable, and the
aim is to evaluate all cases in which it is integrable.
This can even include cases in which m and n remain
symbolic.
It is worth commenting on this choice for the

integrand, particularly the presence of the last factor.
The appendix contains a set of recurrence relations
which allow us to simplify the integrand to a point where
it can be evaluated explicitly. It is found that the �nal
factor is necessary to the recurrence relations. Even if we
set B = C = 0 in the above expression, one step of the
reduction of the integral will introduce the additional
terms. Remarkably, the case a2+b2 = 0 allows a simpler
form of integrand to be reduced, and the appropriate
relations are also included in the appendix.
One standard approach to such integrals, used by

other systems, is the substitution u = tan(c+ dx). This
removes all trigonometric functions from the integral,
and converts the problem to a quasi-rational function
in u. Another similar substitution is the Weierstrass
substitution u = tan((c+ dx)/2). We do not follow this
option. From a mathematical point of view, it brings
with it problems of inverting the transformation, since
arctan is a branched function. From a programming
point of view, the tactic reduces the independence of the
module. The integral problem is moved to other systems,
or other modules in the same system, that handle
non-trigonometric functions. Also, we stated earlier the
aesthetic principle that we try to stay with the functions
appearing in the integrand; this applies both to the
derivations and the �nal expressions.
The rule-based approach for the above integrands uses

12 transformations listed in the appendix to iteratively
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reduce integrands to forms for which the evaluation is
known. The �nal rule is often called a termination rule.
We have not listed all the rules here, because with the
application conditions and termination rules, there are
too many to print. We now give an example of the rules
in action.

5. Example reduction

We consider a speci�c problem. In order to focus on the
principal idea, we have chosen the numerical constants
so that some terms in the recurrence will have zero
coe�cients and keep the expressions short.∫

tan(1 + i+ x)∗(
4− 12 tan(1 + i+ x) + 9 tan(1 + i+ x)2

)
(2− 3 tan(1 + i+ x))3/2

dx .

(11)

To select one of the recurrences below, the program
compare the integrand with the standard form above
and identi�es m = 1 and n = −3/2. Since n ≤ −1, we
select recurrence (20). Because in this case Ab2−abB+
a2C = 0, the recurrence simpli�es even further. Thus
we obtain

− 1

13

∫
tan(1 + i+ x)(−26 + 39 tan(1 + i+ x))√

2− 3 tan(1 + i+ x)
dx .

(12)

Our choice of constants now allows us to simplify the
integrand algebraically. In practice this step is not
performed by appealing to the simpli�cation routines
of the host system. Rather, it is coded within the
rule-based system as a separate rule. This is necessary
because the general host simpli�cation function will
ignore our aesthetic principle of working with the
original functions, in this case tangent. We obtain∫

tan(1 + i+ x)
√
2− 3 tan(1 + i+ x) dx . (13)

This is next transformed using

dn

∫
T1T

n
2 dx −→ Tn

2 − dn

∫
Tn−1
2 T3(b,−a, 0) dx

to obtain∫
3 + 2 tan(1 + i+ x)√
2− 3 tan(1 + i+ x)

dx+ 2
√

2− 3 tan(1 + i+ x) .

(14)

Next an algebraic manipulation rule is used, valid

provided A2 +B2 ̸= 0, a2 + b2 ̸= 0∫
A+B tan(c+ dx)√
a+ b tan(c+ dx)

dx −→

1

2
(A−Bi)

∫
1 + i tan(c+ dx)√
a+ b tan(c+ dx)

dx+

1

2
(A+Bi)

∫
1− i tan(c+ dx)√
a+ b tan(c+ dx)

dx (15)

followed by if A2 +B2 = 0 and bA+ aB ̸= 0 then∫
A+B tan(c+ dx)√
a+ b tan(c+ dx)

dx −→

−
2B arctanh

[√
a+b tan(c+dx)√

a+ bA
B

]
d
√
a+ bA

B

(16)

This rule is used twice to obtain the �nal expression

+ 2
√
2− 3 tan(1 + i+ x)

−
√
2− 3i arctanh

[√
2− 3 tan(1 + i+ x)√

2− 3i

]

−
√
2 + 3i arctanh

[√
2− 3 tan(1 + i+ x)√

2 + 3i

]

6. Concluding remarks

Although one aim of this project is to develop a
system-independent repository of integration rules, at
present the host computer algebra system in�uences the
form of some rules. Since the �rst step in identifying
which rule to apply is to identify the pattern of the
integrand, the underlying pattern recognition functions
of the host system will in�uence the selection of rules.
For example, in Mathematica, (sin(c + dx))−1 is
represented internally as csc(c+ dx), and tan(c+ dx)−1

as cot(c+ dx). Hence, the current module must contain
entries for both tangent and cotangent (other modules
must contain entries for sine and cosecant). A system
which stored reciprocals of tangents di�erently might
need a modi�cation of the database.
A second way in which the host system in�uences the

repository is through simpli�cation. We have already
noted that some algebraic simpli�cations are coded
as rule-based transformations, because otherwise the
system simpli�er would destroy the patterns we prefer.
Our inability to specify our requirements to system
simpli�ers forces us to include algebraic simpli�cation
within the repository, which is a signi�cant increase in
size.
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7. Appendix

We list the recurrence relations used in the integration
scheme [11]. To save space and to show the structure
more clearly, we use the abbreviations

T1 = tan(c+ dx) , T2 = a+ b tan(c+ dx) ,

T3(A,B,C) = A+B tan(c+ dx) + C tan2(c+ dx) .

Then the recurrences, valid for all A,B,C ∈ C, are

d(m+ 1)

∫
Tm
1 Tn

2 T3(A,B,C) dx = (17)

ATm+1
1 Tn

2 + d

∫
Tm+1
1 Tn−1

2 T3(Â, B̂, Ĉ) dx ,

Â = aB(m+ 1)−Abn ,

B̂ = (bB − aA+ aC)(m+ 1) ,

Ĉ = bC(m+ 1)−Ab(m+ n+ 1) .

d(m+ n+ 1)

∫
Tm
1 Tn

2 T3(A,B,C) dx = (18)

CTm+1
1 Tn

2 + d

∫
Tm
1 Tn−1

2 T3(Â, B̂, Ĉ) dx ,

Â = Aa(m+ n+ 1)− C(m+ 1)a ,

B̂ = (aB + bA− bC)(m+ n+ 1) ,

Ĉ = aCn+ bB(m+ n+ 1) .

bd(n+ 1)
(
a2 + b2

) ∫
Tm
1 Tn

2 T3 dx = (19)(
Ab2 − abB + a2C

)
Tm
1 Tn+1

2 + d

∫
Tm−1
1 Tn+1

2 T̂3 dx ,

Â = −
(
Ab2 − abB + a2C

)
m ,

B̂ = b(bB + aA− aC)(n+ 1) ,

Ĉ = (m+ n+ 1)(aB −Ab)b−ma2C + (n+ 1)b2C .

ad(n+ 1)
(
a2 + b2

) ∫
Tm
1 Tn

2 T3 dx = (20)

−
(
Ab2 − abB + a2C

)
Tm+1
1 Tn+1

2 + d

∫
Tm
1 Tn+1

2 T̂3 dx

Â = A
(
a2(n+ 1) + b2(m+ n+ 2)

)
− a(bB − aC)(m+ 1) , B̂ = a(aB − bA+ bC)(n+ 1),

Ĉ =
(
Ab2 − abB + a2C

)
(m+ n+ 2) .

bd(m+ n+ 1)

∫
Tm
1 Tn

2 T3(A,B,C) dx = (21)

CTm
1 Tn+1

2 − d

∫
Tm−1
1 Tn

2 T̂3 dx ,

Â = aCm , B̂ = b(C −A)(m+ n+ 1) ,

Ĉ = aCm− bB(m+ n+ 1) .

ad(m+ 1)

∫
Tm
1 Tn

2 T3(A,B,C) dx = (22)

ATm+1
1 Tn+1

2 + d

∫
Tm+1
1 Tn

2 T̂3 dx ,

Â = aB(m+ 1)−Ab(m+ n+ 2) ,

B̂ = −a(A− C)(m+ 1) , Ĉ = −Ab(m+ n+ 2) .

The following 6 transformations, from (23) to (28),
require the condition a2 + b2 = 0. Note that the third
argument of T3 is now always 0.

d(m+ 1)

∫
Tm
1 Tn

2 T3(A,B, 0) dx = (23)

AaTm+1
1 Tn−1

2 − d

∫
Tm+1
1 Tn−1

2 T3(Â, B̂, 0) dx ,

Â = Ab(n− 1)− (Ab+Ba)(m+ 1) ,

B̂ = Aa(m+ n)−Bb(m+ 1) .

d(m+ n)

∫
Tm
1 Tn

2 T3(A,B, 0) dx = (24)

BbTm+1
1 Tn−1

2 + d

∫
Tm
1 Tn−1

2 T3(Â, B̂, 0) dx ,

Â = Aa(n+m)−Bb(m+ 1) ,

B̂ = Ba(n− 1) + (Ab+Ba)(m+ n) .

2a2nd

∫
Tm
1 Tn

2 T3(A,B, 0) dx = (25)

BbTm
1 Tn

2 + d

∫
Tm−1
1 Tn+1

2 T3(Â, B̂, 0) dx ,

Â = (Ab−Ba)m , B̂ = Bb(m− n) +Aa(m+ n) .

2a2nd

∫
Tm
1 Tn

2 T3(A,B, 0) dx = (26)

− a(aA+ bB)Tm+1
1 Tn

2 + d

∫
Tm
1 Tn+1

2 T̂3(Â, B̂, 0) dx ,

Â = bB(m+ 1) + aA(m+ 2n+ 1) ,

B̂ = (aB −Ab)(m+ n+ 1) .
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ad(m+ n)

∫
Tm
1 Tn

2 T3(A,B, 0) dx = (27)

aBTm
1 Tn

2 + d

∫
Tm−1
1 Tn

2 T̂3(Â, B̂, 0) dx ,

Â = −aBm , B̂ = Aam+ (Aa−Bb)n .

ad(m+ 1)

∫
Tm
1 Tn

2 T3(A,B, 0) dx = (28)

aATm+1
1 Tn

2 + d

∫
Tm+1
1 Tn

2 T̂3(Â, B̂, 0) dx ,

Â = Abn−Ba(m+ 1) , B̂ = Aa(m+ n+ 1) .
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