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Abstract. This paper describes continuing progress on the development
of a repository of transformation rules relevant to indefinite integration.
The methodology, however, is not restricted to integration. Several opti-
mization goals are being pursued, including achieving the best form for
the output, reducing the size of the repository while retaining its scope,
and minimizing the number of steps required for the evaluation process.
New optimizations for expression size are presented.

1 Introduction

The methods of integration can be conveniently divided into several categories.

– Look-up tables. These are collections or databases, such as [4], which try to
list all possible integrals, each in a general form. Many special cases are also
listed separately.

– Rule-based rewriting. The databases used are smaller than those for the
look-up tables. They contain rules for transforming a given integral into one
or more simpler integrals, together with rules for completing the evaluation
in terms of known functions.

– Algorithmic methods. Under this heading, we include Risch integration,
Rothstein-Trager-Rioboo integration, and others, which require extended
computations.

A table of reduction rules can serve more roles than merely the database for an
evaluation system; it can also serve as a repository for mathematical knowledge.
Each rule can be annotated with information on its derivation, with references
to the literature, and so on. An evaluation system can display transformations
as they are used, for the information of users.

Here, we consider the repository of transformation rules for indefinite in-
tegrals that is described in [5, 6]. We shall refer to it by the acronym Rubi:
RUle-Based Integrator. We review the general state of the repository and then
focus on particular aspects, namely, its efficiency, and the selection of output
forms. Procedures have been written in Mathematica to implement the evalu-
ation of integrals using the repository, and these procedures have been the basis
of testing and comparisons.



The role of rule-based approaches, and how they should complement algo-
rithmic methods, can be a subject of debate. For example, Fateman wrote, as
part of a review of the system Mathematica [2]

“Yet the evidence of the past several decades casts strong doubt on the
idea that an efficient version of mathematical knowledge can be imparted
to a symbolic system primarily by rule-transformations on trees.”
Richard Fateman (1992)

Owing to poor implementations, rule-based systems have a reputation for be-
ing inefficient and plagued by endless loops. This paper, however, describes the
crafting of a rule-based repository (Rubi) that is compact, efficient, transpar-
ent and modular. We shall not address the combining of Rubi with algorithmic
approaches, as would be required to arrive at a full integration system, but con-
centrate on the constructing of a database of knowledge, with examples of how
it performs in practice.

It must be emphasized again that what is not being described is a scheme for
table look-up. Such schemes were described, for example, in [3]. The approach
there was to consider data structures and search techniques which would allow
them to encode all the entries in reference books such as [1]. Adopting this
approach for integration — or a fortiori for all simplification — would result in
huge databases which would be unwieldy to maintain, debug and utilize. The
set of rules described here is relatively compact, verifiable and efficient.

2 Basic details of system

Here, we give a brief account of the Rubi system. At the time of testing, it
consisted of 1377 reduction rules. Each rule is an entry in the database and
consists of the following fields.

– Conditions under which the reduction rule is applied. These conditions result
either from requirements for the validity of the transformation, or from re-
quirements that the transformation be a reduction, meaning a step towards
evaluation of the integral.

– The transformation from one expression to another.
– Comments recording the source of the rule (usually a reference to one or

more standard reference books) or other useful information.

It should be noted that programming constructs, such as loops or branching
statements are never used. Examples of these rules are given below in section 4
(without the comments).

The total size of the database (including comments) was 554 Kb. This is
an uncompressed text file. About one third of the file consists of comment text.
Procedures using the pattern-matching functions of Mathematica were written
to apply the database to the test problems, and no attempt is made to measure
the sizes of subsystems of Mathematica used.



The construction and selection of the rules is based on the principle of mutual
exclusivity. For a database of reduction rules to be properly defined, at most one
of the rules can be applicable to any given expression. Mutual exclusivity is crit-
ical to ensuring that rules can be added, removed or modified without affecting
the other rules. Such stand-alone, order-independent rules make it possible to
build a rule-based repository of knowledge incrementally and as a collaborative
effort.

3 Performance Comparison with Other Systems

In order to provide quantitative evidence of the benefits of rule-based integra-
tion, we present a comparison of the performance of various computer algebra
systems on a test suite containing 7927 problems. The performance measure is
based on the validity and simplicity of the expressions returned. Other perfor-
mance measures, such as speed, have been measured, but direct comparisons can
at present be made only with Mathematica, and so here the emphasis is on
expression size, until a variety of platforms can be compared for speed3. We note
in passing, however, that smaller expression sizes will also contribute to speed
advantages.

The expression given for each integral was checked against the simplest form,
obtained from published integral tables, or from integration by hand. For each
problem, the integration result was differentiated by the system being tested, the
derivative subtracted from the integrand, and the system asked to test whether
the result was zero. Each test yielded one of the following 4 judgements:

– Optimal: Correct and close to the best form.

Example:

∫
5x4 dx

(1 + x)6
=

x5

(1 + x)5
.

– Messy: Correct, but the expression is overly large. E.g.∫
5x4 dx

(1 + x)6
= − 1

(1 + x)5
− 5

(1 + x)
− 10

(1 + x)3
+

5

(1 + x)4
+

10

(1 + x)2
.

Note that the optimal and messy results differ by a constant, and the optimal
form cannot be obtained by simplification of the messy.

– Inconclusive: No result was obtained in 60 seconds, or the result could not
be verified, usually because the output was so large that the simplifier failed
while attempting to differentiate and reduce to zero.

– Invalid: The difference between the derivative and integrand was not zero.

The performances on the test suite of Maple, Mathematica and the
present rule-based system Rubi are presented in the tables below. Since Rubi

3 Mathematica has been used to implement Rubi and a comparison with its built-in
Integrate command shows Rubi to be faster on the test suite by a factor of 10. The
test suite has been ported to Maple, but the different syntax for pattern matching
has so far prevented Rubi from being ported. Therefore only the output forms can
be compared.



was developed using the test suite, its good performance is to be expected, but
even so, the favourable comparison with the other systems remains valid.

Although the test suite of 7927 problems is large, the problems themselves
are all part of mainstream calculus, and therefore even the small rate of 3%
invalid results for the large commercial systems is disappointing, to say the
least. However, for the purposes of this paper, the emphasis of the main benefit
of Rubi in this comparison lies in the simpler form of the results. Since the main
advantage lies in the simplicity of the results, we concentrate here on how Rubi
achieves its results, by presenting two case studies.

4 First Case Study: Alternative Strategies

The first study concerns an optimization to reduce output size. In order to obtain
quantitative measures for expression size, utility functions have been written in
Mathematica and Maple that count the number of nodes in the internal
tree representation of a particular expression. Although there are variations in
the internal representations of expressions, the functions provide comparable
measures in the two systems.

We consider the problem of evaluating the integral∫
xm dx

(a + bx)12
, (1)

for different values of m ∈ Z. This is a special case of the more general problem

I(a, b, c, d,m, n) =

∫
(a + bx)m(c + dx)n dx , (2)

where m,n ∈ Z, and a, b, c, d ∈ C.
Our aim is to minimize the number of terms in the expression for the integral.

As a starting point, we can use the standard integrators in Mathematica and
Maple to evaluate the integral, and plot the expression sizes of the results as
functions of m. Figures 1 and 2 show the expression counts for the two systems.

We have extracted below from Rubi the 9 transformation rules applying to
the integral class (2). Each rule is presented in the following form:
N: Necessary conditions for mathematical validity.
T: The transformation rule A→ B.
S: Simplification conditions to ensure the transformation yields a simplification.

All rules require that a, b, c, d,m, n do not contain x, and that b 6= 0. The
rules are:

1. T:

∫
dx

a + bx
→ ln(a + bx)

b
.

2. N: m + 1 6= 0

T:

∫
(a + bx)mdx→ (a + bx)m+1

(m + 1)b
.
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Fig. 1. The node count for expressions returned by Mathematica 7 for the integral in
(1). The horizontal axis shows values of the exponent m, while the vertical axis shows
the node count for the corresponding expression for the integral.
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Fig. 2. The node count for expressions returned by Maple 13 for the integral in (1).
The horizontal axis shows values of the exponent m, while the vertical axis shows the
node count for the corresponding expression for the integral.



3. N: bc− ad = 0, m + n + 1 = 0

T:

∫
(a + bx)m(c + dx)n dx→ (a + bx)m+1(c + dx)n ln(a + bx)/b .

4. N: bc− ad = 0, m + n + 1 6= 0

T:

∫
(a + bx)m(c + dx)n dx→ (a + bx)m+1(c + dx)n

b(m + n + 1)
.

5. N: bc− ad 6= 0

T:

∫
(a + bx)−1(c + dx)−1 dx→ ln(a + bx)− ln(c + dx)

bc− ad
.

6. N: bc− ad 6= 0, m + n + 2 = 0, n 6= −1

T:

∫
(a + bx)m(c + dx)n dx→ − (a + bx)m+1(c + dx)n+1

(n + 1)(bc− ad)
.

7. N: m + n + 1 = 0, m > 0, bc− ad 6= 0

T:

∫
(a + bx)m(c + dx)n dx→ − (a + bx)m

dm(c + dx)m

+
b

d

∫
(a + bx)m−1(c + dx)−m dx .

8. N: bc− ad 6= 0, m + n + 1 6= 0, n > 0

T:

∫
(a + bx)m(c + dx)n dx→ (a + bx)m+1(c + dx)n

b(m + n + 1)

+
n(bc− ad)

b(m + n + 1)

∫
(a+ bx)m(c+dx)n−1 dx .

S: (2n + m + 1 < 0 ∨m + n + 1 > 0) ∧ (m < 0 ∨ n ≤ m)
9. N: bc− ad 6= 0, n + 1 6= 0

T:

∫
(a + bx)m(c + dx)n dx→ − (a + bx)m+1(c + dx)n+1

(n + 1)(bc− ad)

+
(m + n + 2)b

(bc− ad)(n + 1)

∫
(a + bx)m(c + dx)n+1 dx .

S: n < −1, m < 0 ∨ 2m + n + 1 ≥ 0.

We wish to show how these rules are optimized relative to other possible
sets of rules. Specifically, we shall compare these rules with a set in which the
simplification conditions in rules 8 and 9 are modified. We start, however, with
remarks on the rules as presented.

4.1 Remarks

1. An alternative strategy to the set of transformations shown here would be
to define rules for the simpler integrand xm(a+bx)n, and then use the linear
substitution u = c+dx to transform expressions of the form (a+bx)m(c+dx)n

into the simpler form. This strategy was explored, but we discovered that
several more rules are required when starting from the non-symmetrical form
xm(a+bx)n than when starting with the symmetrical (a+bx)m(c+dx)n. This
is because two versions each of rules 7, 8 and 9 had to be given depending
upon whether the exponent of the monomial or the linear factor had to be
incremented or decremented. This subtle, but important, point shows that
sometimes defining more general rules leads to a simpler repository.



2. It should be noted that rule 6 is in fact a special case of rule 9. It is included
because it is convenient to have an explicitly non-recursive entry.

3. Rules 8 and 9 respectively increment and decrement one of the exponents of
the integrand. Unlike the other rules, it is not always obvious which of these
two rules should be applied to a given integrand in order to minimize the
number of steps required to integrate it. This choice is the subject of our
optimization.

5 Integration strategies

The rules stated above describe a complete strategy for integration of the given
class of integrals. The strategy is not unique, however, and other strategies might
be more efficient. We therefore describe two other strategies and compare them
with the preferred strategy.

5.1 Preliminary strategy 1

We replace rule 8 with a rule 8a, in which the simplification conditions are
removed. Thus we have

8a. N: bc− ad 6= 0, m + n + 1 6= 0, n > 0

T:

∫
(a + bx)m(c + dx)n dx→ (a + bx)m+1(c + dx)n

b(m + n + 1)

+
n(bc− ad)

b(m + n + 1)

∫
(a + bx)m(c + dx)n−1 dx .

The effect of removing the restrictions is that all integrals will be reduced until
one of the exponents becomes zero, at which point rules 1 to 6 will terminate
the reduction. When this strategy is applied to the test case (1), the sizes of the
results are as shown in figure 3.

The dip for the case m = 10 is important. For this case, rule 6 provides a
direct one-step integration to a very compact form:∫

x10 dx

(1 + x)12
=

x11

11(1 + x)11
.

This possibility is not noticed by the standard integrators of Mathematica and
Maple, as can be seen in figures 1 and 2.

5.2 Preliminary strategy 2

We now remove the restrictions from rule 9, and place it above rule 8. Thus the
rule becomes

9a N: bc− ad 6= 0, n + 1 6= 0

T:

∫
(a + bx)m(c + dx)n dx→ − (a + bx)m+1(c + dx)n+1

(n + 1)(bc− ad)

+
(m + n + 2)b

(bc− ad)(n + 1)

∫
(a + bx)m(c + dx)n+1 dx
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Fig. 3. The node count for expressions returned by the first alternative integration
strategy for the integral in (1). The horizontal axis shows values of the exponent m,
while the vertical axis shows the node count for the corresponding expression for the
integral.

The effect of this is to increase one negative exponent until rule 6 can be applied.
The resulting statistics on the size of integral expressions is shown in figure 4.
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Fig. 4. The node count for expressions returned by the second alternative integration
strategy for the integral in (1). The horizontal axis shows values of the exponent m,
while the vertical axis shows the node count for the corresponding expression for the
integral.

The dip at m = 0 is a result of rule 2 being applied before the general rules.

5.3 An optimal strategy

Clearly, one can obtain smaller expression sizes if one can switch between the
two strategies just tested. This is what is done in rules 8 and 9 as presented. For



the test case, the two points m = 10 and m = 0 are targets and for m ≤ 5 the
integrands are moved towards m = 0, while for m > 5 they are moved towards
m = 10. The generalization to other powers is shown in rules 8 and 9. The
resulting expression sizes are shown in figure 5.
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Fig. 5. The node count for expressions returned by the optimal integration strategy
for the integral in (1). The horizontal axis shows values of the exponent m, while the
vertical axis shows the node count for the corresponding expression for the integral.

5.4 Comparison with other methods

An obvious algorithmic approach to integral (1) is to expand the fraction using
partial fractions, and then integrate each term. This gives results similar to
those found using Maple and Mathematica. One of the advantages of Rubi
is that such special cases can be identified and taken advantage of. One of the
useful services that computer-algebra systems can offer mathematicians is the
identification of special cases. The general algorithms preferred by Maple and
Mathematica can succeed on large problems which Rubi is not yet capable of
tackling. However, for smaller problems, where special cases might exist, Rubi
is to be preferred.

6 Second Case Study: Two-part reduction

The second case study involves the class of integrals

J(m,n, p) =

∫
xm(a + bx)n(c + dx)p dx , (3)

where the dependence of J on a, b, c, d has been suppressed, since we shall focus
on the powers. We require m ∈ Z, and n, p ∈ Q. The aim is to reduce the
integral in (3) to integrals with known solutions. In this case, the problems with



known solutions are J(0, N, P ) and J(M,N,N). It is straightforward to derive
the equality

J(m,n, p) = (1/b)J(m− 1, n + 1, p)− (a/b)J(m− 1, n, p) (4)

An obvious strategy for m > 0 is to use this relation to reduce all integrals to
the form J(0, N, p). Thus, using the above conventions for describing a reduction
rule, the rule reads

11. T: J(m,n, p)→ 1
bJ(m− 1, n + 1, p)− (a/b)J(m− 1, n, p)

S: m ∈ Z, m > 0, n, p ∈ Q, n− p < 0

At this point the algorithmically oriented person jumps to a composite rule by
applying (4) m times to obtain

J(m,n, p) =
1

bm

m∑
k=0

(
m

k

)
(−a)kJ(0, n + k, p) . (5)

This, however, falls again into the trap that awaits grand algorithmic, or general-
formula based, approaches. There are many special-case simplifications that will
be skipped over by (5). Because the formula is derived for generic n, p, it can
have no special behaviour for special cases. For example, if there exists k such
that n + k = p and k < m, then some terms can be removed from the sum
and simplified separately, using the special case J(m− k, n + k, p) = J(M,p, p).
One of the differences between different computer systems is the extent to which
they attempt intermediate simplifications. Using a step-based series of transfor-
mations (as Rubi does) each intermediate result can be tested for simplification
before continuing.

For the case m < 0, we rewrite (4) as

J(m,n, p) = (1/a)J(m,n + 1, p)− (b/a)J(m + 1, n, p) (6)

Applying this reduction k times, we would obtain

J(m,n, p) =
1

ak

k∑
i=0

(
k

i

)
(−b)iJ(m + i, n + k − i, p) (7)

The terms in the sum can be evaluated whenever m + i = 0 or n + k − i = p.
Clearly, the latter condition requires that initially n − p ∈ N. Therefore, the
integral J(m,n, p) will be evaluated after at most max(n − p,m) steps. As in
the m > 0 case, however, it is better to apply the reduction stepwise in order to
obtain the maximum benefit from intermediate, special case, simplifications.

As an example of the above rules, we present the same integral calculated by
Rubi, by Mathematica and by Maple. First, Rubi:∫ √

2 + 3x dx

x2(5− x)3/2
=

2
√

2 + 3x

25
√

5− x
−
√

5− x
√

2 + 3x

25x
− 21

25
√

10
arctanh

√
10− 2x√
10 + 15x



Next, Mathematica:

=
1

500

(
20(−5 + 3x)

√
2 + 3x

x
√

5− x
+ 21
√

10 ln
(

21
√

10x
)

−21
√

10 ln
(

50
(

20 + 13x + 2
√

10
√

5− x
√

2 + 3x
)))

Finally, Maple:

= − 1

500

(
21
√

10 arctanh

(
1/20

(20 + 13x)
√

10√
10 + 13x− 3x2

)
x2

−105
√

10arctanh

(
1/20

(20 + 13x)
√

10√
10 + 13x− 3x2

)
x + 60x

√
10 + 13x− 3x2

−100
√

10 + 13x− 3x2
)√

5− x
√

2 + 3x (−5 + x)
−1 1√

10 + 13x− 3x2
x−1

There is a disadvantage, however, to stepwise application of the above reduc-
tion, a disadvantage well known in other contexts. This is the repeated evaluation
of the same integral during recursive calls. The standard example of this effect is
the recursive evaluation of Fibonacci numbers. This is paralleled in applications
of (4) and (6). This effect was one reason that Maple introduced its option

remember early in its development. The important additional feature present
here, that is not present in the Fibonacci example, is the possibility of different
simplification options directing the computation to simpler results.

7 Concluding remarks

In [5], a number of advantages of rule-based simplification were listed. These
included (see reference for details).

– Human and machine readable.

– Able to show simplification steps.

– Facilitates program development.

– Platform independent.

– White box transparency.

– Fosters community development.

– An active repository.

In this paper we have shown that an additional advantage of rule-based
evaluation, illustrated in the integration context, is greater simplicity of results.
Finally, we wish to point out that the integration repository described here has
been published on the web [6], and is available for viewing and testing by all
interested people.
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RuleBasedMathematics

Test Items Rubi: Rule-based Integrator

Integrand Number Optimal Messy Inconc. Invalid

Rational 1426 1424 1 1 0
Algebraic 1494 1483 8 3 0

Exponential 456 452 0 4 0
Logarithmic 669 667 0 2 0

Trigonometric 1805 1794 8 3 0
Hyperbolic 1386 1379 6 1 0
Inverse trig 283 281 0 2 0

Inverse hyperbolic 342 335 2 5 0
Special functions 66 66 0 0 0

Percentages 99.4% 0.3% 0.3% 0%

Table 1. The integration test suite, with the numbers of problems broken down in cat-
egories. The performance of the Rule-based Integrator (Rubi) is given using measures
described in the text.



Test Items Maple

Integrand Number Optimal Messy Inconc. Invalid

Rational 1426 1176 249 0 1
Algebraic 1494 1126 277 45 46

Exponential 456 351 63 37 5
Logarithmic 669 284 161 194 30

Trigonometric 1805 1054 619 83 49
Hyperbolic 1386 521 641 181 43
Inverse trig 283 206 64 5 8

Inverse hyperbolic 342 159 96 55 32
Special functions 66 38 1 25 2

Percentages 62.0% 27.4% 7.9% 2.7%

Table 2. The performance of Maple on the test suite, using measures described in the
text.

Test Items Mathematica

Integrand Number Optimal Messy Inconc. Invalid

Rational 1426 1239 187 0 0
Algebraic 1494 1228 246 18 2

Exponential 456 406 32 12 6
Logarithmic 669 581 84 4 0

Trigonometric 1805 1212 573 3 17
Hyperbolic 1386 911 464 6 5
Inverse trig 283 211 62 10 0

Inverse hyperbolic 342 198 140 3 1
Special functions 66 53 9 4 0

Percentages 76.2% 22.7% 0.8% 0.4%

Table 3. The performance of Mathematica on the test suite, using measures described
in the text.


