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Abstract

Various extensions of the tanh-function method and their implementations for finding explicit travelling wave solutions to nonlinear partial
differential equations (PDEs) have been reported in the literature. However, some solutions are often missed by these packages. In this paper, a
new algorithm and its implementation called TWS for solving single nonlinear PDEs are presented. TWS is implemented in MAPLE 10. It turns
out that, for PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore, TWS obtains
more solutions than existing packages for most cases.

Program summary

Program title: TWS
Catalogue identifier: AEAM_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEAM_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 1250
No. of bytes in distributed program, including test data, etc.: 78 101
Distribution format: tar.gz
Programming language: Maple 10
Computer: A laptop with 1.6 GHz Pentium CPU
Operating system: Windows XP Professional
RAM: 760 Mbytes
Classification: 5
Nature of problem: Finding the travelling wave solutions to single nonlinear PDEs.
Solution method: Based on tanh-function method.
Restrictions: The current version of this package can only deal with single autonomous PDEs or ODEs, not systems of PDEs or ODEs. However,
the PDEs can have any finite number of independent space variables in addition to time t .
Unusual features: For PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore,
TWS obtains more solutions than existing packages for most cases.
Additional comments: It is easy to use.
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1. Introduction

Mathematical modelling of physical systems often leads to nonlinear partial differential equations (PDEs). Explicit solutions,
especially travelling wave solutions, to such equations are of fundamental importance. In order to help physicists and engineers
better understand the mechanisms that govern these physical phenomena, many powerful and direct methods have been proposed.
Among these are direct integration (whenever possible), Hirota’s bilinear method [4], the inverse scattering transform [4], Painlevé
expansion method [2] and the real exponential method [12,13].

A less sophisticated but more direct method, the tanh-function method, was proposed to find explicit travelling wave solutions
to nonlinear PDEs. This method was due to Malfliet and Hereman [17,18]. Since then, a lot of relative contributions have been
reported in the literature, for example, [5,10,11,19,20].

However, only tanh type travelling wave solutions can be obtained by the tanh-function method. If a given PDE has other types
of travelling wave solutions, for example, tan type or rational type solutions, we have to repeat the similar but tedious calculations.
With this consideration in mind, Fan [8,9] proposed an extended tanh-function method by which one can simultaneously obtain
three types of travelling wave solutions to a given PDE. The key idea of the method is to take advantage of the Riccati equation
w′ = b + w2 and use its solutions to replace tanh(kz) according to the sign of b. Later, based on Fan’s method, Elwakil and his
coworkers proposed a modified extended tanh-function method [6,7].

In principle, the tanh-function method is more straightforward than the real exponential method. However, for other than simple
equations it is still tedious to use by hand. If we take full advantage of modern computer algebra systems such as MAPLE and
MATHEMATICA, the limitation of the tanh-function method mentioned above would be eliminated.

Based on the tanh-function method, Parkes and Duffy developed a MATHEMATICA package called ATFM which can deal with
tedious algebraic computations and output directly the travelling wave solutions to given PDEs [19]. However, ATFM can only
carry out some (but not all) steps of the method.

A much more comprehensive MATHEMATICA package called PDESPECIALSOLUTIONS was developed by Hereman and his
students in a three-year period starting in 1999 [1]. PDESPECIALSOLUTIONS can deal with not only single PDEs or ordinary
differential equations (ODEs) but also systems of PDEs or ODEs. It can perform the computations automatically from start to end
without human intervention. However, PDESPECIALSOLUTIONS can only computes the tanh type, sech type, the mixed tanh-sech
type, and the Jacobi’s CN and SN type travelling wave solutions.

There is a built-in package called TWSolutions (actually it is one of the commands in the package PDEtools) in MAPLE 10 for
solving the travelling wave solutions to given PDEs. It is based on the work by Cheb-Terrab and von Bulow [3]. TWSolutions can
find different types of solutions according to a list of pre-selected functions instead of just tanh. It works for systems of PDEs or
ODEs as well as single PDEs or ODEs.

Other Maple packages worthy of mention are those developed by Li and Liu [14–16]. The package RATH automates the tanh-
function method for single PDEs [14]. The package AJFM automates the Jacobi elliptic function method for single PDEs [16].
Later, based on these packages, they developed a much more comprehensive package called RAEEM [15] which, as they claimed,
can obtain solutions of polynomial, rational, exponential, triangular, hyperbolic, Jacobi elliptic and Weierstrass elliptic types. Fur-
thermore, RAEEM also works for systems of PDEs as well as single PDEs.

However, we notice that, these packages do not work well when the balancing numbers of the given PDEs are not positive
integers. Moreover, some types of solutions are often missed by these packages. These observations motivate us to propose a new
algorithm to overcome these weaknesses. A new package called TWS based on the new algorithm has been implemented in MAPLE

10. Instead of extending the scope of problems, on the contrary, we confine ourselves to single PDEs and ODEs. In this way, we
can focus on refining existing algorithms and implementing the new algorithm carefully. The new package TWS has been used to
solve almost one hundred PDEs and ODEs on MAPLE 10. It turns out that, for PDEs whose balancing numbers are not positive
integers, TWS works much better than the Maple packages RAEEM and TWSolutions. Furthermore, for most cases, TWS obtains
more solutions than RAEEM and TWSolutions.

This paper is organized as follows. In Section 2, the main steps of the algorithm are presented and discussed. In Section 3,
examples are shown to demonstrate the advantages of the package in comparison with other Maple packages. In Section 4, the
limitation of the package and our future plan are mentioned.
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2. Algorithms

As mentioned in Section 1, the current version of the package can only work for single PDEs or ODEs, not for systems of PDEs.
Furthermore, every PDE must be a polynomial in a function (for example, u(x1, . . . , xk, t)) and its partial derivatives, and must be
autonomous. On the other hand, the function may have any finite number of independent space variables in addition to time t .

Suppose we are given such a PDE (denoted by pde):

(1)H(u,ut , ux1 , ux2 , . . . , ux1x1 , ux1x2 , . . .) = 0

for a function u(x1, . . . , xk, t). Like the package TWSolutions, we select a list of functions instead of just tanh for finding travelling
wave solutions. The functions we choose are (denoted by funclist): [rational, exp, sinh, csch, cosh, sech, tanh, coth, sin, csc, cos, sec,
tan, cot, JacobiCN, JacobiSN].

Now, for every function f in funclist and the balancing number m (we will explain it in the main algorithm below), we have
a subalgorithm called TWSsolve to compute all the travelling wave solutions of f type, where plist is some list of the parameters
occurred in pde, and real is a boolean value which determines the output of the solutions. If real is true then only real solutions are
output, otherwise, all real and complex solutions are obtained.

Algorithm 1. TWSsolve.
Input: pde, m, f , plist, real.
Output: The travelling wave solutions to pde with respect to f .
Procedure:

S1 Substitute u(x1, . . . , xk, t) = U(η) where

(2)η =
k∑

i=1

λixi + λk+1t + δ

into pde to get an ODE ode with dependent variable U(η). If the input equation is an ODE with dependent variable u(x), then
(2) becomes η = λx + δ.

S2 Substitute

(3)U(η) =
m∑

i=−m

aiT
i,

where T = f (η) into ode and eliminate the common denominator to get an equation. Instead of using traditional polynomial
form, we use this symmetric one (3) which comes from [6] to obtain more solutions.
In order to see what the resulting equation looks like, we list the first-order and/or second-order derivatives of the functions in
funclist as follows.

(
1

η

)′
= −

(
1

η

)2

;
(
eη

)′ = eη,

tanh(η)′ = 1 − tanh(η)2,

coth(η)′ = 1 − coth(η)2,

tan(η)′ = 1 + tan(η)2,

cot(η)′ = −1 − cot(η)2,

sinh(η)′ =
√

1 + sinh(η)2, sinh(η)′′ = sinh(η),

cosh(η)′ =
√

cosh(η)2 − 1, cosh(η)′′ = cosh(η),

sin(η)′ =
√

1 − sin(η)2, sin(η)′′ = − sin(η),

cos(η)′ = −
√

1 − cos(η)2, cos(η)′′ = − cos(η),

csch(η)′ = − csch(η)

√
1 + csch(η)2, csch(η)′′ = csch(η) + 2 csch(η)3,

sech(η)′ = − sech(η)

√
1 − sech(η)2, sech(η)′′ = sech(η) − 2 sech(η)3,
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csc(η)′ = − csc(η)

√
csc(η)2 − 1, csc(η)′′ = 2 csc(η)3 − csc(η),

sec(η)′ = sec(η)

√
sec(η)2 − 1, sec(η)′′ = 2 sec(η)3 − sec(η),

JacobiCN(η,ω)′ = −
√

(1 − ω2 + ω2 JacobiCN(η,ω)2)(1 − JacobiCN(η,ω)2),

JacobiCN(η,ω)′′ = (2ω2 − 1) JacobiCN(η,ω) − 2ω2 JacobiCN(η,ω)3,

JacobiSN(η,ω)′ =
√

(1 − ω2 JacobiSN(η,ω)2)(1 − JacobiSN(η,ω)2),

JacobiSN(η,ω)′′ = 2ω2 JacobiSN(η,ω)3 − (ω2 + 1) JacobiSN(η,ω),

where ω is the modulus and 0 � ω � 1.

From the formulas above, we can see that for every function f in funclist, any order derivative of f (η) with respect to η is a
polynomial in f (η), or of the form Φ

√
Γ where Φ and Γ are polynomials in f (η). Therefore, after substituting (3) into ode

and eliminating the common denominator which is a power of f (η), we obtain the desired equation of the form

(4)Φ + Ψ
√

Γ = 0,

where Φ,Ψ and Γ are polynomials in f (η). In case f is one of the functions: rational, exp, tanh, coth, tan, cot, then Ψ ≡ 0
which means that the resulting equation is a polynomial equation in f (η).

S3 Set all the coefficients of the different powers of T in Φ and Ψ of (4) to zero, and consequently get a system of polynomial
equations whose variables include ai, a−i (i = 1, . . . ,m),λj (j = 1, . . . , k + 1), δ, and the parameters in plist.

S4 Solve the system of polynomial equations with respect to the variables using the Maple command solve. For the order of the
variables, we sort the variables in ascending order according to their degrees in the system. It turns out that the Maple solver is
very powerful. For polynomial equations, it outputs all the solutions.

S5 If real = true, keep the real solutions only.
S6 Substitute the solutions obtained into U(η) = ∑i=m

i=−m aiT
i one by one to get the travelling wave solutions of f type.

Based on Algorithm 1, the main algorithm now is:

Algorithm 2. TWS.
Input:
pde: a PDE as described in (1);
flist: a list of functions. The default value is funclist;
plist: a list of parameters. The default value is the empty list;
real: a boolean value. The default value is true.
Output: The travelling wave solutions to pde.
Procedure:

Set Soln = { }. For each f in flist repeat

M1 Find the balancing number m of pde with respect to f . As in step S1 of Algorithm 1, we change pde into ode with dependent
variable U(η). Then we need to determine the degree of each term in ode with respect to T = f (η) when substituting (3)
into ode (but actual substitution is not necessary).
According to the list of formulas in step S2 of Algorithm 1, we can see that if f is one of the functions: rational, tanh, coth,
tan, cot, csch, sech, sec, csc, JacobiCN and JacobiSN, then the degree of dpU(η)/dηp with respect to T is m + p; if f is
one of the functions: exp, sinh, cosh, sin, cos, then the degree of dpU(η)/dηp with respect to T is m, and the degree of
U(η)q with respect to T is qm. Based on these facts above, each term in ode has a degree with respect to T in the form of
cm + d , and consequently we obtain a list of degrees for ode. Find the degree with maximum value of c and the degree with
maximum value of d . Then by equating them we can solve the balancing number m.
As an example, let pde be ut − uxx − u + u2 = 0 and f be tanh. Then the list of degrees is [m + 1,m + 2,m,2m]. So from
m + 2 = 2m, we get m = 2.

M2 If m ∈ N, then set Soln = Soln ∪ TWSsolve(pde,m,f,plist, real).
M3 If m /∈ N and m �= 0, then substitute u = vm into pde to get another PDE pde2. It is easy to prove that the balancing number

m2 of pde2 is a positive integer. m2 can be computed by step M1. Set Soln2 = TWSsolve(pde2,m2, f,paramset, real). Then
raise every entry in Soln2 to the power of m. Finally, set Soln = Soln ∪ Soln2.

3. Examples

The algorithm in Section 2 has been programmed into a MAPLE package. The command for loading it to a Maple session is
(suppose it is stored in C:\pde\TWS.mpl)
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> read "C:/pde/TWS.mpl"

The calling sequence is: TWS(pde, function = flist,parameter = plist, real), where

• pde—a PDE as described in (1);
• flist—(optional) a list of functions to be used for finding the travelling wave solutions to pde, and the default value is: [rational,

exp, sinh, csch, cosh, sech, tanh, coth, sin, csc, cos, sec, tan, cot, JacobiCN, JacobiSN];
• plist—(optional) a list of parameters occurred in pde, and the default value is the empty list;
• real—(optional) a boolean value which determines the output of the solutions: if it is true (the default value), only real solutions

are returned, otherwise, all solutions are returned.

Before comparing the new package with other existing packages, we mention a key point when using it. If the given PDE pde
contains parameters, and pde has travelling wave solutions only for special parameter values, then these parameters must be spec-
ified by the argument parameter = plist in the calling sequence above. Otherwise, the new package will treat these parameters as
arbitrary parameters that allow any values. Consequently no nontrivial solutions would be returned by the package.

As an example, let pde be a generalized Kuramoto–Sivashinsky equation [19] ut + uux − uxx + αuxxx + uxxxx = 0. If we run
the following Maple command, then no nontrivial solutions are obtained.

> TWS(pde, function=[tanh]);

But if we run the following Maple command specifying the parameter α, then 3 tanh/coth type nontrivial solutions are returned for
the special value α = 0. Notice that, in the following examples, the outputs of the solutions have been edited in order to give a more
pleasing layout.

> TWS(pde, function=[tanh],parameter=[alpha]);

• α = 0, u(x, t) = a0 − 45
361

√
19 tanhη + 15

361

√
19(tanhη)3, where η =

√
19

38 x −
√

19
38 a0t + δ.

• α = 0, u(x, t) = 15
361

√
19

(tanhη)3 − 45
361

√
19

tanhη
+ a0, where η =

√
19

38 x −
√

19
38 a0t + δ.

• α = 0, u(x, t) = 15
2888

√
19(tanhη)−3 − 135

2888

√
19(tanhη)−1 + a0 − 135

2888

√
19 tanhη + 15

2888

√
19(tanhη)3, where η =

√
19

76 x −√
19

76 a0t + δ.

Now we start to compare the new package TWS with other existing packages. Because MATHEMATICA is not available to us,
we mainly compare TWS with the Maple packages TWSolutions [3] and RAEEM [15].

Example 1. (See [19].) A generalized Fisher equation ut − uxx − u−1u2
x = u(1 − u3).

This is a PDE whose balancing number is not a positive integer. It turns out that the new package TWS obtains 15 nontrivial
solutions as follows.

> pde1:=diff(u(x,t),t)-diff(u(x, t),x$2)-diff(u(x,t),x)^2/u(x,t)
=u(x,t)*(1-u(x,t))^3

pde1 := ∂

∂t
u(x, t) − ∂2

∂x2
u(x, t) − ( ∂

∂x
u(x, t))2

u(x, t)
= u(x, t)

(
1 − (

u(x, t)
)3)

> TWS(pde1);

• 1 tan/cot type solution:

u(x, t) =
3
√

28

4

(
1 + (tan( 3

8

√
2x + δ))2

tan( 3
8

√
2x + δ)

)2/3

.

• 1 cos/sec type solution:

u(x, t) =
3
√

14

2

((
cos

(
3

4

√
2x + δ

))−1)2/3

.
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• 1 sin/csc type solution:

u(x, t) =
3
√

14

2

((
sin

(
3

4

√
2x + δ

))−1)2/3

.

• 12 tanh/coth type solutions:

u(x, t) =
3
√

4

4

(
− (−1 + tanh( 3

56

√
14x − 33

56 t + δ))2

tanh( 3
56

√
14x − 33

56 t + δ)

)2/3

,

u(x, t) =
3
√

2

2

(−1 + tanh( 3
28

√
14x − 33

28 t + δ)

tanh( 3
28

√
14x − 33

28 t + δ)

)2/3

,

u(x, t) = 1

4

(
4 + 4 tanh

(
3

28

√
14x + 33

28
t + δ

))2/3

,

u(x, t) =
3
√

2

2

(
1 + tanh( 3

28

√
14x + 33

28 t + δ)

tanh( 3
28

√
14x + 33

28 t + δ)

)2/3

,

u(x, t) = 1

4

(
4 − 4 tanh( 3

28

√
14x − 33

28 t + δ)

tanh( 3
28

√
14x − 33

28 t + δ)

)2/3

,

u(x, t) = 1

4

(
−4 − 4 tanh

(
3

28

√
14x + 33

28
t + δ

))2/3

,

u(x, t) = 1

4

(
4 − 4 tanh

(
3

28

√
14x − 33

28
t + δ

))2/3

,

u(x, t) = 1

4

(−4 − 4 tanh( 3
28

√
14x + 33

28 t + δ)

tanh( 3
28

√
14x + 33

28 t + δ)

)2/3

,

u(x, t) = 1

4

(
−4 + 4 tanh

(
3

28

√
14x − 33

28
t + δ

))2/3

,

u(x, t) =
3
√

4

4

(
(−1 + tanh( 3

56

√
14x − 33

56 t + δ))2

tanh( 3
56

√
14x − 33

56 t + δ)

)2/3

,

u(x, t) =
3
√

4

4

(
− (1 + tanh( 3

56

√
14x + 33

56 t + δ))2

tanh( 3
56

√
14x + 33

56 t + δ)

)2/3

,

u(x, t) =
3
√

4

4

(
(1 + tanh( 3

56

√
14x + 33

56 t + δ))2

tanh( 3
56

√
14x + 33

56 t + δ)

)2/3

.

On the other hand, the package RAEEM obtains no solutions, while the package TWSolutions returns only trivial solutions.

> functionlist := [JacobiCN, JacobiDN, JacobiNC, JacobiND, JacobiNS,
JacobiSN, WeierstrassP, arcsinh, cos, cosh, cot, coth, csc, csch,
exp, identity, ln, sec, sech, sin, sinh, tan, tanh]:

> TWSolutions(pde1, function=functionlist);

u(x, t) = 1,

u(x, t) = −1

2
+ 1

2
i
√

3,

u(x, t) = −1

2
− 1

2
i
√

3.

Example 2. (See [6].) A nonlinear reaction-diffusion equation ut − (u2)xx − pu + qu2 = 0 where q > 0.

This is another PDE whose balancing number is not a positive integer. The new package TWS obtains six tanh/coth type solutions
when the argument function = flist is specified.
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> pde2:=diff(u(x,t),t)-(diff(u(x,t)^2,x$2)-p*u(x,t)+q*u(x,t)^2=0;

pde2 := ∂

∂t
u(x, t) − 2

(
∂

∂x
u(x, t)

)2

− 2

(
∂2

∂x2
u(x, t)

)
u(x, t) − pu(x, t) + q

(
u(x, t)

)2 = 0

> TWS(pde2,function=[tanh]);

u(x, t) = 2p tanh( 1
4
√

qx − 1
4pt + δ)

q(−1 + tanh( 1
4
√

qx − 1
4pt + δ))

,

u(x, t) = −4p tanh( 1
8
√

qx − 1
8pt + δ)

q(1 − 2 tanh( 1
8
√

qx − 1
8pt + δ) + (tanh( 1

8
√

qx − 1
8pt + δ))2)

,

u(x, t) = 2p tanh( 1
4
√

qx + 1
4pt + δ)

q(1 + tanh( 1
4
√

qx + 1
4pt + δ))

,

u(x, t) = 4p tanh( 1
8
√

qx + 1
8pt + δ)

q(1 + 2 tanh( 1
8
√

qx + 1
8pt + δ) + (tanh( 1

8
√

qx + 1
8pt + δ))2)

,

u(x, t) = 2p

q(1 + tanh( 1
4
√

qx + 1
4pt + δ))

,

u(x, t) = −2p

q(−1 + tanh( 1
4
√

qx − 1
4pt + δ))

.

Again, the package RAEEM obtains no solutions, while the package TWSolutions returns three nontrivial tanh type solutions.

> TWSolutions(pde2,function=[tanh],remove_redundant=true);

u(x, t) = p

q
,

u(x, t) = −2p

q(−1 + tanh(−_C1 + 1
4
√

qx − 1
4pt))

,

u(x, t) = −2p

q(tanh(_C1 + 1
4
√

qx − 1
4pt) − 1)

,

u(x, t) = 2p

q(1 + tanh(−_C1 + 1
4
√

qx + 1
4pt))

.

Example 3. (See [6].) A (2 + 1)-dimensional KdV–Burgers equation (ut + uux + puxxx − quxx)x + ruyy = 0.

For this nonlinear PDE, the new package TWS obtains 17 nontrivial solutions. They are as follows.

• 2 rational type solutions:

u(x, y, t) = a−2

(λ3t + δ)2
+ a−1

λ3t + δ
+ a0 + a1(λ3t + δ) + a2(λ3t + δ)2,

u(x, y, t) = a0 + a1(λ2y + λ3t + δ).

• 1 exponential type solution:

u(x, y, t) = a−2

(eλ3t+δ)2
+ a−1

eλ3t+δ
+ a0 + a1e

λ3t+δ + a2(e
λ3t+δ)2.

• 1 tan/cot type solution:

u(x, y, t) = a−2

(tan(λ3t + δ))2
+ a−1

tan(λ3t + δ)
+ a0 + a1 tan(λ3t + δ) + a2

(
tan(λ3t + δ)

)2
.

• 1 sec/cos type solution:

u(x, y, t) = a−2

(sec(λ3t + δ))2
+ a−1

sec(λ3t + δ)
+ a0 + a1 sec(λ3t + δ) + a2

(
sec(λ3t + δ)

)2
.
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• 1 sech/cosh type solution:

u(x, y, t) = a−2

(sech(λ3t + δ))2
+ a−1

sech(λ3t + δ)
+ a0 + a1 sech(λ3t + δ) + a2

(
sech(λ3t + δ)

)2
.

• 1 csc/sin type solution:

u(x, y, t) = a−2

(csc(λ3t + δ))2
+ a−1

csc(λ3t + δ)
+ a0 + a1 csc(λ3t + δ) + a2

(
csc(λ3t + δ)

)2
.

• 1 csch/sinh type solutions:

u(x, y, t) = a−2

(csch(λ3t + δ))2
+ a−1

csch(λ3t + δ)
+ a0 + a1 csch(λ3t + δ) + a2

(
csch(λ3t + δ)

)2
.

• 7 tanh/coth type solutions:

u(x, y, t) = a0 + 6

25
q2p−1 tanhη − 3

25
q2p−1(tanhη)2, where

η = − qx

10p
+ λ2y + (−3q4 + 2500rλ2

2p
3 + 25q2a0p)t

250p2q
+ δ.

u(x, y, t) = − 3

100
q2p−1(tanhη)−2 − 3

25
q2p−1(tanhη)−1 + a0 − 3

25
q2p−1 tanhη − 3

100
q2p−1(tanhη)2, where

η = qx

20p
+ λ2y − (−3q4 + 20000rλ2

2p
3 + 50q2a0p)t

1000p2q
+ δ.

u(x, y, t) = − 3

100
q2p−1(tanhη)−2 + 3

25
q2p−1(tanhη)−1 + a0 + 3

25
q2p−1 tanhη − 3

100
q2p−1(tanhη)2, where

η = − qx

20p
+ λ2y + (−3q4 + 20000rλ2

2p
3 + 50q2a0p)t

1000p2q
+ δ.

u(x, y, t) = − 3

25
q2p−1(tanhη)−2 − 6

25
q2p−1(tanhη)−1 + a0, where

η = qx

10p
+ λ2y − (−3q4 + 2500rλ2

2p
3 + 25q2a0p)t

250p2q
+ δ.

u(x, y, t) = − 3

25
q2p−1(tanhη)−2 + 6

25
q2p−1(tanhη)−1 + a0, where

η = − qx

10p
+ λ2y + (−3q4 + 2500rλ2

2p
3 + 25q2a0p)t

250p2q
+ δ.

u(x, y, t) = a−2

(tanhη)2
+ a−1

tanhη
+ a0 + a1 tanhη + a2(tanhη)2, where

η = λ3t + δ.

u(x, y, t) = a0 − 6

25
q2p−1 tanhη − 3

25
q2p−1(tanhη)2, where

η = qx

10p
+ λ2y − (−3q4 + 2500rλ2

2p
3 + 25q2a0p)t

250p2q
+ δ.

• 2 Jacobi elliptic type solutions:

u(x, y, t) = a−2

(JacobiCN(η,ω))2
+ a−1

JacobiCN(η,ω)
+ a0 + a1 JacobiCN(η,ω) + a2

(
JacobiCN(η,ω)

)2
, where

η = λ3t + δ.

u(x, y, t) = a−2

(JacobiSN(η,ω))2
+ a−1

JacobiSN(η,ω)
+ a0 + a1 JacobiSN(η,ω) + a2

(
JacobiSN(η,ω)

)2
, where

η = λ3t + δ.

On the other hand, the package RAEEM returns 3 tanh type nontrivial solutions as follows. Notice that the third solution can be
transferred into tanh type.
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• u(ξ) = a0 + a1 tanh(ξ) + a2(tanh(ξ))2, ξ = k(x − c1y − tc2), where

a2 = − 3q2

25p
, a0 = 3q2 + 25pc2 − 25pc2

1r

25p
, a1 = 6q2

25p
,k = − q

10p
and

a2 = − 3q2

25p
, a1 = − 6q2

25p
, k = q

10p
, a0 = 3q2 + 25pc2 − 25pc2

1r

25p
.

• u(ξ) = a0
a1(sech(ξ))2

tanh(ξ)−1 + a2(sech(ξ))4

(tanh(ξ)−1)2 , ξ = k(x − yc1 − tc2), where

a1 = 0, a2 = − 3q2

25p
, k = q

10p
, a0 = 25pc2 − 25pc2

1r + 6q2

25p

The package TWSolutions obtains 8 nontrivial solutions of tan type, cot type, tanh type and coth type. Notice that, the tan type
and cot type solutions are complex solutions.

• 2 cot type solutions:

u(x, y, t) = 2500r_C32p3 + 3q4 + 250i_C4qp2

25q2p
− 6

25
iq2(cotη)p−1 + 3

25
q2(cotη)2p−1, where

η = _C1 + 1/10iqx

p
+ _C3y + _C4t.

u(x, y, t) = 2500r_C32p3 + 3q4 − 250i_C4qp2

25q2p
− 6

25
iq2(cotη)p−1 + 3

25
q2(cotη)2p−1, where

η = −_C1 + 1/10iqx

p
− _C3y − _C4t.

• 2 coth type solutions:

u(x, y, t) = −−3q4 − 250C4qp2 + 2500r_C32p3

25q2p
− 6

25
q2(cothη)p−1 − 3

25
q2(cothη)2p−1, where

η = −_C1 + qx

10p
− _C3y − _C4t.

u(x, y, t) = −−3q4 + 250_C4qp2 + 2500r_C32p3

25q2p
− 6

25
q2(cothη)p−1 − 3

25
q2(cothη)2p−1, where

η = _C1 + qx

10p
+ _C3y + _C4t.

• 2 tan type solutions:

u(x, y, t) = 2500r_C32p3 + 3q4 + 250i_C4qp2

25q2p
+ 6

25
iq2(tanη)p−1 + 3

25
q2(tanη)2p−1, where

η = _C1 + 1/10iqx

p
+ _C3y + _C4t.

u(x, y, t) = 2500r_C32p3 + 3q4 − 250i_C4qp2

25q2p
+ 6

25
iq2(tanη)p−1 + 3

25
q2(tanη)2p−1, where

η = −_C1 + 1/10iqx

p
− _C3y − _C4t.

• 2 tanh type solutions:

u(x, y, t) = −−3q4 − 250_C4qp2 + 2500r_C32p3

25q2p
− 6

25
q2(tanhη)p−1 − 3

25
q2(tanhη)2p−1, where

η = −_C1 + qx

10p
− _C3y − _C4t.

u(x, y, t) = −−3q4 + 250_C4qp2 + 2500r_C32p3

25q2p
− 6

25
q2(tanhη)p−1 − 3

25
q2(tanhη)2p−1, where

η = _C1 + qx

10p
+ _C3y + _C4t.
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Example 4. (See [1].) The Zakharov–Kuznetsov KdV-type equation ut + αuux + uxxx + uxyy + uxzz = 0.

For this (3 + 1)-dimensional PDE, the new package TWS obtains 27 nontrivial solutions. They are as follows.

• 2 rational type solutions:

u(x, y, z, t) = −12
λ2

2 + λ2
1 + λ2

3

α(λ1x + λ2y + λ3z − αλ1a0t + δ)2
+ a0.

u(x, y, z, t) = a−2

η2
+ a−1

η
+ a0 + a1η + a2(η)2, where η = λ2y + λ3z + δ.

• 1 exponential type solution:

u(x, y, z, t) = a−2

(eλ2y+λ3z+δ)2
+ a−1

eλ2y+λ3z+δ
+ a0 + a1e

λ2y+λ3z+δ + a2(e
λ2y+λ3z+δ )2.

• 4 tan type solutions:

u(x, y, z, t) = −12
λ2

2 + λ2
1 + λ2

3

α(tan(λ1x + λ2y + λ3z + (−8λ2
3λ1 − 8λ2

2λ1 − 8λ3
1 − αλ1a0)t + δ))2

+ a0.

u(x, y, z, t) = a−2

(tanη)2
+ a−1

tanη
+ a0 + a1 tanη + a2(tanη)2, where η = λ2y + λ3z + δ.

u(x, y, z, t) = a0 − 12
(λ2

2 + λ2
1 + λ2

3)(tanη)2

α
, where

η = λ1x + λ2y + λ3z + (−8λ2
3λ1 − 8λ2

2λ1 − 8λ3
1 − αλ1a0

)
t + δ.

u(x, y, z, t) = −12
λ2

2 + λ2
1 + λ2

3

α(tanη)2
+ a0 − 12

(λ2
2 + λ2

1 + λ2
3)(tanη)2

α
, where

η = λ1x + λ2y + λ3z + (−8λ2
3λ1 − 8λ2

2λ1 − 8λ3
1 − αλ1a0

)
t + δ.

• 2 sec type solutions:

u(x, y, z, t) = a−2

(secη)2
+ a−1

secη
+ a0 + a1 secη + a2(secη)2, where η = λ2y + λ3z + δ.

u(x, y, z, t) = a0 − 12
(λ2

2 + λ2
1 + λ2

3)(secη)2

α
, where

η = λ1x + λ2y + λ3z + (−αλ1a0 + 4λ3
1 + 4λ2

3λ1 + 4λ2
2λ1

)
t + δ.

• 2 sech type solutions:

u(x, y, z, t) = a−2

(sechη)2
+ a−1

sechη
+ a0 + a1 sechη + a2(sechη)2, where η = λ2y + λ3z + δ.

u(x, y, z, t) = a0 + 12
(λ2

2 + λ2
1 + λ2

3)(sechη)2

α
, where

η = λ1x + λ2y + λ3z + (−αλ1a0 − 4λ3
1 − 4λ2

3λ1 − 4λ2
2λ1

)
t + δ.

• 4 tanh type solutions:

u(x, y, z, t) = −12
λ2

2 + λ2
1 + λ2

3

α(tanh(λ1x + λ2y + λ3z + (8λ3
1 + 8λ2

3λ1 + 8λ2
2λ1 − αλ1a0)t + δ))2

+ a0.

u(x, y, z, t) = a−2

(tanhη)2
+ a−1

tanhη
+ a0 + a1 tanhη + a2(tanhη)2, where η = λ2y + λ3z + δ.

u(x, y, z, t) = a0 − 12
(λ2

2 + λ2
1 + λ2

3)(tanhη)2

α
, where

η = λ1x + λ2y + λ3z + (
8λ3

1 + 8λ2
3λ1 + 8λ2

2λ1 − αλ1a0
)
t + δ.

u(x, y, z, t) = −12
λ2

2 + λ2
1 + λ2

3

α(tanhη)2
+ a0 − 12

(λ2
2 + λ2

1 + λ2
3)(tanhη)2

α
, where

η = λ1x + λ2y + λ3z + (
8λ3

1 + 8λ2
3λ1 + 8λ2

2λ1 − αλ1a0
)
t + δ.
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• 4 JacobiCN type solutions:

u(x, y, z, t) = a−2

(JacobiCN(η,ω))2
+ a−1

JacobiCN(η,ω)
+ a0 + a1 JacobiCN(η,ω) + a2

(
JacobiCN(η,ω)

)2
, where

η = λ2y + λ3z + δ.

u(x, y, z, t) = a0 + 12
ω2(λ2

2 + λ2
1 + λ2

3)(JacobiCN(η,ω))2

α
,

u(x, y, z, t) = 12
−λ2

1 − λ2
2 − λ2

3 + λ2
3ω

2 + λ2
2ω

2 + λ2
1ω

2

α(JacobiCN(η,ω))2
+ a0, and

u(x, y, z, t) = 12
−λ2

1 − λ2
2 − λ2

3 + λ2
3ω

2 + λ2
2ω

2 + λ2
1ω

2

α(JacobiCN(η,ω))2
+ a0 + 12

ω2(λ2
2 + λ2

1 + λ2
3)(JacobiCN(η,ω))2

α
, where

η = λ1x + λ2y + λ3z + δ + (−αλ1a0 + 4λ2
3λ1 + 4λ3

1 − 8λ2
2λ1ω

2 − 8λ2
3λ1ω

2 − 8λ3
1ω

2 + 4λ2
2λ1

)
t.

• 4 JacobiSN type solutions:

u(x, y, z, t) = a−2

(JacobiSN(η,ω))2
+ a−1

JacobiSN(η,ω)
+ a0 + a1 JacobiSN(η,ω) + a2

(
JacobiSN(η,ω)

)2
, where

η = λ2y + λ3z + δ.

u(x, y, z, t) = a0 − 12
ω2(λ2

2 + λ2
1 + λ2

3)(JacobiSN(η,ω))2

α
,

u(x, y, z, t) = −12
λ2

2 + λ2
1 + λ2

3

α(JacobiSN(η,ω))2
+ a0 − 12

ω2(λ2
2 + λ2

1 + λ2
3)(JacobiSN(η,ω))2

α
, and

u(x, y, z, t) = −12
λ2

2 + λ2
1 + λ2

3

α(JacobiSN(η,ω))2
+ a0, where

η = λ1x + λ2y + λ3z + (
4λ2

2λ1 + 4λ2
3λ1ω

2 − αλ1a0 + 4λ2
2λ1ω

2 + 4λ2
3λ1 + 4λ3

1ω
2 + 4λ3

1

)
t + δ.

• 2 csc type solutions:

u(x, y, z, t) = a0 − 12
(λ2

2 + λ2
1 + λ3

2)(cscη)2

α
, where

η = λ1x + λ2y + λ3z + (−αλ1a0 + 4λ3
1 + 4λ2

3λ1 + 4λ2
2λ1

)
t + δ.

u(x, y, z, t) = a−2

(cscη)2
+ a−1

cscη
+ a0 + a1 cscη + a2(cscη)2, where η = λ2y + λ3z + δ.

• 2 csch type solutions:

u(x, y, z, t) = a−2

(cschη)2
+ a−1

cschη
+ a0 + a1 cschη + a2(cschη)2, where η = λ2y + λ3z + δ.

u(x, y, z, t) = a0 − 12
(λ2

2 + λ2
1 + λ2

3)(cschη)2

α
, where

η = λ1x + λ2y + λ3z + (−αλ1a0 − 4λ3
1 − 4λ2

3λ1 − 4λ2
2λ1

)
t + δ.

On the other hand, the package TWSolutions returns an error message if the argument function = functionlist (see Example 1) is
specified, while the package RAEEM obtains 7 nontrivial solutions as follows.

• 1 sec type solution:

u(ξ) = a0 + a1 sec(ξ) + a2
(
sec(ξ)

)2
, ξ = −k(−x + yc1 + c2z + tc3), where

a0 = 4k2c2
2 + 4k2c2

1 + 4k2 + c3

α
, a1 = 0, a2 = −12

k2(1 + c2
1 + c2

2)

α
.

• 1 sech type solution:

u(ξ) = a0 + a1 sech(ξ) + a2
(
sech(ξ)

)2
, ξ = −k(−x + yc1 + c2z + tc3), where

a0 = −4k2c2
1 − 4k2 − 4k2c2

2 + c3

α
, a2 = 12

k2(1 + c2
1 + c2

2)

α
, a1 = 0.
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• 1 tan type solution:

u(ξ) = a0 + a1 tan(ξ) + a2
(
tan(ξ)

)2
, ξ = −k(−x + yc1 + c2z + tc3), where

a0 = −8k2c2
1 − 8k2 − 8k2c2

2 + c3

α
, a1 = 0, a2 = −12

k2(1 + c2
1 + c2

2)

α
.

• 2 tanh type solution:

u(ξ) = a0 + a1 tanh(ξ) + a2
(
tanh(ξ)

)2
, ξ = −k(−x + yc1 + c2z + tc3), where

a1 = 0, a2 = −12
k2(1 + c2

1 + c2
2)

α
, a0 = 8k2 + 8k2c2

2 + c3 + 8k2c2
1

α
.

u(ξ) = a0 + a1(sech(ξ))2

tanh(ξ) − 1
+ a2(sech(ξ))4

(tanh(ξ) − 1)2
, ξ = −k(−x + yc1 + c2z + tc3), where

a2 = −12
k2(1 + c2

1 + c2
2)

α
, a1 = −24

k2(1 + c2
1 + c2

2)

α
, a0 = −4k2c2

2 − 4k2 − 4k2c2
1 + c3

α
.

• 1 JacobiCN type solution:

u(ξ) = a0 + a1 cn(ξ) + a2
(
cn(ξ)

)2
, ξ = −k(−x + yc1 + c2z + tc3), where

a2 = 12
k2R2(1 + c2

1 + c2
2)

α
, a0 = 4k2c2

2 + c3 − 8k2c2
2R

2 − 8k2c2
1R

2 − 8k2R2 + 4k2c2
1 + 4k2

α
, a1 = 0.

• 1 JacobiSN type solution:

u(ξ) = a0 + a1 sn(ξ) + a2
(
sn(ξ)

)2
, ξ = −k(−x + yc1 + c2z + tc3), where

a1 = 0, a2 = −12
k2R2(1 + c2

1 + c2
2)

α
, a0 = 4k2 + 4k2c2

1R
2 + 4k2c2

2R
2 + 4k2c2

2 + 4k2c2
1 + 4k2R2 + c3

α
.

4. Conclusions

We have described a new algorithm and its implementation in MAPLE 10 for automatically computing the travelling wave
solutions to nonlinear PDEs. For single PDEs, this new package has two main advantages: first, for PDEs whose balancing numbers
are not positive integers, TWS works much better than existing packages; second, for most cases, TWS obtains more solutions than
existing packages. However, nothing is perfect. The main disadvantage of this package is that the current version cannot handle
systems of PDEs. Theoretically, extending it for handling systems of PDEs is not a difficult problem, but substantial work has to be
done before we can do so. Therefore, we leave it to the next version.
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