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The Lambert W function has a number of integral expressions, including integrals of Bern-
stein, Thorin, Poisson, Stieltjes, Pick and Burniston-Siewert types. We give explicit integral
expressions for W for each of these types. We also give integrals for a number of functions
containing W .

1. Introduction

The Lambert W function is a multivalued inverse of the mapping W 7→WeW . Its
branches, denoted by Wk (k ∈ Z), are defined through the equations [10]

∀z ∈ C, Wk(z) exp(Wk(z)) = z , (1)

Wk(z) ∼ lnk z as <z →∞ , (2)

where lnk z denotes branch k of the natural logarithm [14], and branch cuts for
W are placed on the negative real axis. This paper considers mostly the principal
branch W0, which is the branch that maps the positive real axis onto itself, and
therefore we abbreviate W0 as W herein; the k = −1 branch is denoted explicitly
W−1 when discussed. A summary of the properties ofW that are relevant to integral
representations has been given in [15] and are not repeated.

In [15] we proved, using general arguments, that many functions containing W
belong to function classes having integral representations, specifically the Bern-
stein or Stieltjes function classes. Here we consider a number of additional function
classes, namely the class of Pick functions and subclasses of Bernstein functions,
including Thorin-Bernstein functions and complete Bernstein functions. A descrip-
tion of the classes can be found in a review paper [4] and a recently published
book [23]. For all classes we give explicit integral representations for W and some
functions containing W . Finally, we give integrals for W following Poisson [22] and
the methods of Burniston–Siewert [6].

2. Explicit Stieltjes representations

We begin with explicit expressions for the Stieltjes transforms for some functions
studied in [15]; we follow the definition of Stieltjes function given in [4].
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Definition 2.1 A function f : (0,∞) → R is called a Stieltjes function if it
admits a representation

f(x) = a+

∫ ∞
0

dσ(t)

x+ t
(x > 0) , (3)

where a is a non-negative constant and σ is a positive measure on [0,∞) such that∫∞
0 (1 + t)−1dσ(t) <∞.

The Stieltjes representation for W (z)/z was given in [15] in terms of W itself.
We remove the self-reference by giving an integral representation containing only
elementary functions.

Theorem 2.2 The following representation of function W (z)/z holds [28].

W (z)

z
=

1

π

∫ π

0

v2 + (1− v cot v)2

z + v csc(v)e−v cot v
dv , (|arg z| < π) . (4)

Proof From [15], we take

W (z)

z
=

1

π

∫ ∞
1/e

1

z + t

=W (−t)
t

dt , (5)

and change to the variable v = =W (t). From [15, Eq.1.10], this implies

t = t(v) = −v csc(v)e−v cot v . (6)

The integral becomes

W (z)

z
=

1

π

∫ π

0

v

t(z − t)
dv

v′(t)
, (7)

Further simplification gives (4). �

Remark 1 Since the integrand in (4) is an even function in v, the integral admits
the symmetric form

W (z)

z
=

1

2π

∫ π

−π

v2 + (1− v cot v)2

z + v csc(v)e−v cot v
dv , (|arg z| < π) .

This integral has a C∞ periodic extension and thus the midpoint rule is spectrally
convergent for its quadrature (see e.g. [26]).

By Corollary 2.3 in [15] the derivative of W is a Stieltjes function. This guides
us to the following theorem [25].

Theorem 2.3 The derivative of W has the Stieltjes integral representation

W ′(z) =
W (z)

z(1 +W (z))
=

1

π

∫ π

0

dv

z + v csc(v)e−v cot v
, (|arg z| < π) . (8)

Proof Since W ′ decays at infinity [15], one can write

W ′(z) =

∫ ∞
0

dµ(t)

z + t
, (9)
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where the unknown function µ(t) can be determined using the Stieltjes-Perron
inversion formula [12, p. 591]

µ(t) =
1

π
lim
s→0+

=
∫ −t
−∞

W ′(τ + is) dτ

for all continuity points on the t-axis. Since µ(t) is defined up to an arbitrary
constant, one can set, after integrating,

µ(t) =
1

π
lim
s→0+

=W (−t+ is) =
1

π
=W0(−t) , (10)

where the limit uses the continuity from above of W on its branch cut. The same
result can be obtained using one of Sokhotskyi’s formulas [13, p. 138].

To verify that µ(t) satisfies the conditions in Definition 2.1, we use [15, lemma
1.1] to trim the domain of integration in (9) to 1/e < t <∞. In addition, µ(t) can
be regarded as a positive measure such that dµ(t)/dt = o(1/t) at large t. Therefore∫∞

1/e(1 + t)−1dµ(t) <∞ as required. Thus (9) takes the form

W ′(z) =
1

π

∫ ∞
1/e

1

z + t

d=W0(−t)
dt

dt . (11)

Changing to the variable v = =W0(−t) as before, we obtain (8). �

Remark 2 Formula (11) can also be found by considerations similar to those used
in [15] to prove (5). Moreover, (11) is a result of differentiating (5) with subsequent
integration by parts. The representation (11) is also found in [21].

Remark 3 Comparing formulae (5) and (11) shows that the latter can be formally
obtained from the former by replacing the ratios W (z)/z and µ(t)/t respectively
with the derivatives dW (z)/dz and dµ(t)/dt, where µ(t) is defined by (10).

Corollary 2.4 ∫ π

0

{
sin v

v
ev cot v

}p
dv =

πpp

p!
, p ∈ N . (12)

Proof The integral (9) can be written as

∞∑
n=1

(−1)n−1n
n

n!
zn−1 =

1

π

∫ π

0

dv

z − t
, (13)

where t is the same as in (6) and the left side is the Taylor series for W ′ and is
convergent for |z| < 1/e. Since |t| > 1/e and therefore |z| < |t|, we can expand
(z − t)−1 in non-negative powers of z. Equating the coefficients of like powers of z
we obtain the equality

(−1)n−1n
n

n!
= − 1

π

∫ π

0

dv

tn
,

which after substituting for t results in (12). �

It is obvious that if the integral (12) is known, then going back from it to (13)
we find (8). The integral (12) was conjectured by Nuttall for real p ≥ 0 [20];
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Bouwkamp found a more general integral [5], for which Nuttall’s conjecture is a
special case, using a representation of πpp/Γ(p + 1) via a Hankel-type integral.
Thus the Stieltjes representation of W ′ allows one to compute the integral (12)
and conversely, starting with the integral of Nuttall-Bouwkamp one can obtain
formula (8) in a way completely different from that used in the proof of Theorem
2.3. It is interesting to note that the connection between (12) and Lambert W
was noted by W.E. Hornor and C.C. Rousseau before W was named (see editorial
remarks in [20]).

According to [15, Thm 2.2], the functions 1/(1 + W (z)) and 1/W (z) − 1/z are
Stieltjes functions. The following theorem makes this explicit.

Theorem 2.5 The following Stieltjes integral representations hold

1

1 +W (z)
=

1

π

∫ π

0

dv

1 + zev cot v sin v/v
, (|arg z| < π) , (14)

1

W (z)
=

1

z
+

1

π

∫ π

0

v2 + (1− v cot v)2

v csc(v) (v csc(v) + zev cot v)
dv , (|arg z| < π) . (15)

Proof The proof follows the methods of proof of Theorem 2.3. �

Corollary 2.6

W (z) = ln

[
1 +

z

π

∫ π

0

v2 + (1− v cot v)2

v csc(v) (v csc(v) + zev cot v)
dv

]
. (16)

Proof By substituting (15) in W (z) = ln(z/W (z)). �

Remark 4 Sokal [25] has pointed out that these Stieltjes representations can be
used to obtain those for functions containing W (1/z) by just replacing z with 1/z.
For example, formula (8) yields

W (1/z)

1 +W (1/z)
=

1

π

∫ π

0

dv

1 + zv csc(v)e−v cot v
(|arg z| < π) .

3. Bernstein representations

In [15] it was shown that W is a Bernstein function, which means that it admits
the Lévy-Khintchine representation

W (x) = a+ bx+

∫ ∞
0

(
1− e−xξ

)
dν(ξ) , (17)

where ν is a positive measure on (0,∞) satisfying
∫∞

0 ξ(1 + ξ)−1dν(ξ) < ∞ (the
Lévy measure), and a, b ≥ 0. Since W (0) = 0 and limx→∞W (x)/x = 0, we have
a = 0 and b = 0. The function ν(ξ) is identified by the next theorem.

Theorem 3.1 For the principal branch of W function the following formula holds

W (z) =

∫ ∞
0

(
1− e−zξ

) ϕ(ξ)

ξ
dξ , (<z ≥ 0), (18)
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where

ϕ(ξ) =
1

π

∫ π

0
exp

(
−ξv csc(v)e−v cot v

)
dv . (19)

Proof We consider the Stieltjes integral form (9) for W ′ and use the representation
(x+ t)−1 =

∫∞
0 e−(x+t)ξdξ to write it in the form

W ′(x) =

∫ ∞
0

{∫ ∞
0

e−ξt dµ(t)

}
e−xξ dξ . (20)

Comparing (20) and the result of differentiating (17) we find the relation between
measures µ and ν [3]

dν

dξ
=

1

ξ

∫ ∞
0

e−ξt dµ(t) .

Using formula (10) and changing to the variable v = =W (−t) as before we obtain

dν =
ϕ(ξ)

ξ
dξ , (21)

where ϕ(ξ) is defined by (19). We collect the intermediate results and take a holo-
morphic continuation of (17) to the right half-plane <z ≥ 0 where the integral (18)
is convergent, in accordance with near-conjugate symmetry (cf. Proposition 3.5 in
[23]). �

In addition to being a Bernstein function, W is a member of the subclass of
complete Bernstein functions [15]. Now we show that W also belongs to another
subset of Bernstein functions.

Definition 3.2 [23, Definition 8.1] A Bernstein function f is called a Thorin–
Bernstein function if the Lévy measure in (17) is such that t dν(t)/dt is a completely
monotonic function.

Theorem 3.3 Lambert W is a Thorin–Bernstein function.

Proof By Theorem 8.2 in [23], it is sufficient to note that W (x) maps (0,∞) to
itself, W (0) = 0 and W ′(x) is a Stieltjes function. �

The same theorem asserts the existence of two integral representations for
Thorin–Bernstein functions. One of these is precisely (5) and the other is shown in
the following theorem.

Theorem 3.4 The principal branch of the W function can be represented as the
integral

W (z) =
1

π

∫ π

0
ln

(
1 + z

sin v

v
ev cot v

)
dv (|arg z| < π) . (22)

Proof Integration of (5) by parts gives

W (x) =
1

π

∫ ∞
1/e

ln
(

1 +
x

t

) d

dt
=W (−t) dt . (23)
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By [15, Lemma 1.2], the measure =W (−t) satisfies the requirements needed for
[23, Theorem 8.2]. Changing to the variable v = =W (−t) as before and taking a
holomorphic extension of the result to the cut z-plane C\(−∞, 0] satisfying near
conjugate symmetry, we obtain (22). �

Remark 1 In the terminology of [23, p. 75], the integral form (23) is the Thorin
representation of W function and µ(t) = =W (−t)/π is the Thorin measure of W .

Remark 2 Differentiating the representation (22) for W (z) gives formula (8) for
W ′(z).

Remark 3 The representation (23) (up to changing t to −t) was obtained in [7] as
a dispersion relation for the principal branch of W function. The representations
(18)-(19) and (23) are also found in [21].

Note that by (19) function ϕ(ξ) is completely monotonic, as it should be by
Definition 3.2.

4. Pick representations

Definition 4.1 [4, Definition 4.1] A function f(z) is called a Pick function (or
Nevanlinna function) if it is holomorphic in the upper half-plane =z > 0 and
=f ≥ 0 there.

A Pick function f(z) admits an integral representation [4, Theorem 4.4]

f(z) = α0 + b0z +

∫ ∞
−∞

1 + tz

(t− z)(1 + t2)
dσ(t) (=z > 0) , (24)

where

α0 = <f(i), b0 = lim
y→∞

f(iy)

iy
, (25)

and σ is a positive measure which satisfies

lim
s→0+

1

π

∫
R
=f(t+ is)ϕ(t)dt =

∫
R
ϕ(t)dσ(t) (26)

for all continuous functions ϕ : R → R with compact support. The formula (24)
with the integral written in terms of a measure dσ̃(t) = π(1 + t2)−1dσ(t) is called
a Nevanlinna formula [17, p. 100].

Since W (z) is a holomorphic function in the upper half-plane =z > 0, where
=W (z) > 0, we have that W (z) is a Pick function. This also follows from the fact
[15] that W belongs to the class of complete Bernstein functions because the latter
are exactly those Pick functions which are non-negative on the positive real line
[23, Theorem 6.7]. Thus W admits a representation (24) and in view of that the
following theorem holds.

Theorem 4.2 The principal branch of W function can be represented in the form

W (z) = α0 +
1

π

∫ π

0
K(z, v)t(v) dv (|arg z| < π) , (27)
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where α0 = <W (i) = 0.3746990..,

K(z, v) =
(1 + zt(v))

(
v2 + (1− v cot v)2

)
(z − t(v)) (1 + t2(v))

, (28)

and t(v) is defined by (6).

Proof We apply formulae (25) and (26) to function f(z) = W (z) to obtain

α0 = <W (i) , b0 = lim
y→∞

W (iy)

iy
, dσ(t) =

1

π
=W (t) dt .

Thus b0 = 0, and since =W (t) = 0 for t ≥ −1/e, we obtain

W (z) = α0 +
1

π

∫ −1/e

−∞

1 + tz

(t− z)(1 + t2)
=W (t) dt (=z > 0) . (29)

By the change of variable v = =W (t) in the integral (29) (see (6)) we obtain
formula (27), which is also valid in the lower half-plane =z < 0 in accordance with
the near-conjugate symmetry of W . �

Corollary 4.3

W (z)

z
= γ0 exp

{
− 1

π

∫ π

0
K(z, v)t(v)dv

}
(|arg z| < π) , (30)

where γ0 = exp(−<W (i)) = 0.6874961...

Proof It immediately follows from (27) owing to the identity W (z)/z = e−W (z). �

Now we take advantage of the fact that if f is a Stieltjes function then −f and
1/f are Pick functions [4]. Therefore, −W (x)/x and x/W (x) are Pick functions
that admit a representation (24).

Theorem 4.4 For the principal branch of the W function the following formulae,
with K(z, v) defined by (28), hold.

W (z)

z
= β0 +

1

π

∫ π

0
K(z, v) dv (|arg z| < π) , (31)

z

W (z)
= η0 −

1

π

∫ π

0
K(z, v)e−2v cot v dv (|arg z| < π) , (32)

where β0 = < [W (i)/i] = =W (i) = 0.5764127.., η0 = <[i/W (i)] = 1.2195314.. .

The constants in (27)—(32) obey α0 + iβ0 = W (i), γ0 = e−α0 = β0/ cosβ0, and
η0 = β0/(α

2
0 + β2

0).
We add in one more integral representation associated with the Nevanlinna for-

mula which follows from the result obtained by Cauer [9]. Specifically, based on the
Riesz-Herglotz formula [17, p. 99] Cauer proved that if a real symmetric function
f(z) with non-negative real part is holomorphic in the right z-half-plane, it can be
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represented as

f(z) = z

[
b+

∫ ∞
0

dh(r)

z2 + r

]
, (33)

where constant b ≥ 0 and

h(r) =
2

π
lim
x→0
<
∫ √r

0
f(x+ iy)dy . (34)

In fact, the formula (33) follows from the Nevanlinna formula (or (24)) after chang-
ing the variable z → −iz, which transforms the upper half-plane onto the right
half-plane, and taking into account f(z̄) = f(z).

Theorem 4.5 The following representation of function W (z)/z holds

W (z)

z
=

2

π

∫ π/2

0

[
v2 + (1 + v tan v)2

]
v sec(v)ev tan v

z2 + v2 sec2(v)e2v tan v
tan v dv (<z > 0) . (35)

Proof Since W function meets the above requirements, the formulas (33) and (34)
can be applied with the result

W (z)

z
=

2

π

∫ ∞
0

<W (is)

z2 + s2
ds (<z > 0) ,

where we set b = 0, because limz→∞W (z)/z = 0, and r = s2. The integral can be
converted to elementary functions by in terms of a parameter v given by

<W (is) = v tan v , s = s(v) = v sec(v)ev tan v . (36)

We obtain

W (z)

z
=

2

π

∫ π/2

0

v tan v

z2 + s2(v)

ds

dv
dv . (37)

Completing the simplifications, one obtains (35). �

5. Poisson integrals

Siméon Poisson was one of many mathematicians who defined and used Lambert
W (or a cognate) without naming it. In his 105 page treatise on integration [22],
he considered integrals of the following type.

Theorem 5.1 The following two formulae of Poisson type hold for x ∈ (−1/e, e)

W (x) =
2

π

∫ π

0

cos 3
2θ − xe

− cos θ cos
(

5
2θ + sin θ

)
1− 2xe− cos θ cos(θ + sin θ) + x2e−2 cos θ

cos 1
2θ dθ , (38)

W (x) = − 2

π

∫ π

0

sin 3
2θ + xecos θ sin

(
5
2θ − sin θ

)
1 + 2xecos θ cos(θ − sin θ) + x2e2 cos θ

sin 1
2θ dθ . (39)
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Proof We consider the defining equation (1) as an equation F (W ) = 0 with respect
to W , where

F (ζ) = ζ − xe−ζ . (40)

Let Γ be the positively-oriented circumference of the unit circle |ζ| = 1 in the
complex ζ-plane and let G be the interior of Γ. The function F (ζ) is holomorphic
in G and by Rouché’s theorem it has a single isolated zero there when |x| < 1/e
because in this case

∣∣−xe−ζ∣∣ < |ζ| on Γ. Therefore, using Cauchy’s integral formula
with Γ as the integration contour, we can write

W =
1

2πi

∫
Γ

F ′(ζ)

F (ζ)
ζ dζ (41)

for |x| < 1/e. Since F ′(ζ) = 1 + xe−ζ = 1 + ζ, we obtain

W =
1

2π

∫ π

−π

eiθ(1 + eiθ)

1− xe− cos θ−i(θ+sin θ)
dθ , (42)

where we set ζ = eiθ,−π ≤ θ ≤ π. Separating the real and imaginary parts of the
integrand in (42) we find that the former is an even function of θ whereas the latter
is an odd one. Thus, the integral of the imaginary part vanishes, as it should, and
the integral of the real part gives double the value of the integral on [0, π]. As a
result, after some re-arrangement, we come to integral (38). The formula (39) can
be proved in a similar way (see details in Remark 1 below).

The above proof establishes the domain of validity of the integrals to be at least
−1/e < x < 1/e. We now show that the upper limit of the domain can be extended
from 1/e to e. This follows from the fact that W is a single valued function, and
therefore F (ζ), the denominator in (41), has a single zero in G for each x such
that |ζ| < 1, i.e. for −1/e < x < e. Since Rouché’s theorem is a consequence of
the argument principle (see e.g. [18]), it is instructive to obtain this result using
the latter. To do this, say for integral (38), we apply the argument principle to the
function (40) in the case x > 0. It is easy to see that η = F (ζ) conformally maps
the strip {−∞ < <ζ <∞,−π < =ζ < π}, containing the entire domain G, to the
complex η-plane cut along two semi-infinite lines on which η = ξ± iπ, ξ ≥ 1 + lnx.
We also cut the η-plane along the negative real axis to take |arg η| ≤ π in the cut
plane and consider an image of Γ which is defined by equations

ρ cosϕ = cos θ − xe− cos θ cos(sin θ) , (43a)

ρ sinϕ = sin θ + xe− cos θ sin(sin θ) , (43b)

where ρ = |η| and ϕ = arg η.
The equations (43) are invariant under transformation θ → −θ, ϕ → −ϕ and

describe a closed curve Γ̃ that is symmetric with respect to the real axis in the
η-plane. Suppose that while a variable point ζ moves along Γ once in the ζ-plane,
the image point η = F (ζ) moves on Γ̃ once in the η-plane, making one cycle about
the origin. Then the change in argument of η is 2π and therefore, by the argument
principle the function F (ζ) has a single zero in G [18, p. 48]. For this it is necessary
that two points on Γ̃ corresponding to ϕ = 0 and ϕ = π are located on the real axis
on opposite sides of the origin, i.e. with positive ρ to be measured on the opposite
rays. Substituting θ = π in (43) gives ρ cosϕ = −1− xe and ρ sinϕ = 0. We have
ρ > 0 only when ϕ = π; then ρ = 1 + xe is positive for any x > 0. When θ = 0, we
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have ρ cosϕ = 1−x/e and ρ sinϕ = 0. Now ϕ = 0 and ρ = 1−x/e > 0 when x < e.
Thus for 0 < x < e the curve Γ̃ encloses the origin. Since for these x the right-hand
side of equation (43b) vanishes, i.e. =η = 0 sequentially at θ = −π, θ = 0 and
θ = π as θ continuously changes from −π to π, the curve Γ̃ is traversed once with
exactly one cycle about the origin being made. This corresponds to the fact that
the inverse of the mapping η = F (ζ) is continuous in the domain bounded by the
curve Γ̃ and on Γ̃ itself and hence Γ̃ consists only of simple points [19, Theorem
2.22]. Thus, by the argument principle the function F (ζ) has a single zero in G.
Gathering the results, we conclude that the integral (38) is valid for x ∈ (−1/e, e).
The integral (39) can be considered in a similar manner. �

Remark 1 The integral (39) is explicitly given by Poisson in [22, sec. 80, p. 501].
He defined, without naming, a function he called y which today we call the tree
function T (x), defined by [11, p.127-128] Te−T = x, or T (x) = −W (−x). Poisson
proved the formula (39) using the Lagrange Inversion Theorem [27, p. 133] and a
series expansion of the logarithmic function− ln(1−eixφ) in powers of eix, where the
expansion coefficients φn/n are exactly the coefficients of the complex exponential
Fourier series for the same function. On the other hand, today it is well known [8,
p. 143-145] that there is a tight connection between the classical Poisson Formula
and the Cauchy Integral Formula. Based on the latter one could give another proof
similar to the above one of integral (38).

Remark 2 We can apply the above approach to the equation W (z) = ln z−lnW (z).
To eliminate a singularity at the origin we compose the integration contour of a
small circle of radius, say r, and the unit circle, both centered at the origin and
connected through the cut along the negative real axis. Then, making r go to zero,
we find for 0 < x < e

W (x) = ψ(x) +
2

π

∫ π

0

cos
θ

2
+ θ sin

3

2
θ − cos

3

2
θ lnx

1 + 2θ sin θ + θ2 − 2 cos θ lnx+ ln2 x
cos

θ

2
dθ ,

where

ψ(x) =

∫ 1

0

t− 1

π2 + (lnx+ t− ln t)2
dt .

6. Burniston-Siewert representations

One of the analytic methods for solving transcendental equations is based on a
canonical solution of the suitably posed Riemann-Hilbert boundary-value problem
[13, p. 183-193]. This method was found and developed by Burniston and Siewert
[6]; its versions, variations and applications were also considered by other authors.
The method solves a transcendental equation as a closed-form integral formula that
can be regarded as an integral representation of the unknown variable. Below we
consider such integrals for W function which are based on the results of application
of the Burniston-Siewert method to solving equation (1) obtained in paper [1] and
the classical work [24].

We start with two formulas derived in [1] and apply them to function (40)

W (x) = −F (0) exp

{
− 1

2πi

∫
Γ

ln (F (ζ)/ζ)

ζ
dζ

}
, (44)
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W (x) = − 1

2πi

∫
Γ

ln

(
F (ζ)

ζ

)
dζ, (45)

where the integration contour Γ is the unit circle |ζ| = 1 and x ∈ (−1/e, e). Since
F (0) = −x and W (x)/x = e−W (x), formula (44) is simplified

W (x) =
1

2πi

∫
Γ

ln (F (ζ)/ζ)

ζ
dζ . (46)

We set ζ = eiθ,−π ≤ θ ≤ π. Then, as F (ζ)/ζ = F (eiθ)e−iθ = R(θ) + iI(θ), where

R(θ) = 1− xe− cos θ cos(θ + sin θ),

I(θ) = xe− cos θ sin(θ + sin θ),

and dζ/ζ = idθ, the integral (46) is reduced to

W (x) =
1

2π

∫ π

0
ln
(
R2(θ) + I2(θ)

)
dθ . (47)

Similarly, the integral (45) can be represented in the form

W (x) =
1

2π

∫ π

0

{
2 arctan(I(θ)/R(θ)) sin θ − ln

(
R2(θ) + I2(θ)

)
cos θ

}
dθ , (48)

where we have taken into account that arg(R(θ) + iI(θ)) = arctan(I(θ)/R(θ)) as
R(θ) > 0 for 0 < θ < π and −1/e < x < e. We note that the integral (47)
has a simpler form than (48). Integrals similar to the above with using a function
F̃ (ζ) = ζeζ −x in our notations instead of (40) in formulas (44) and (45) (without
simplification (46)) are given in [1].

Thus the integrals (47) and (48) representing the principal branch of the Lambert
W function are valid in the domain that contains interval (−1/e, 0).

However, there is one more branch that is also a real-valued function on this
interval, this is the branch −1 with the range (−∞,−1) (recall W0 > −1 and
W0(−1/e) = W−1(−1/e) = −1) [10]. To obtain a representation of this branch
we find a zero of function Φ(ζ) = 1 − xe−ζ/ζ in (−∞,−1) for fixed x using an
approach [2] (cf. formulae (12) and (8) therein)

W−1(x) = −c− 1

2πi

∫
C

ln
Φ(ζ)

ζ + c
dζ ,

where the circle C is defined by equation |ζ + c| = c − 1 with arbitrary constant
c > 1 and −1/e < x < −(2c− 1)e1−2c. The last integral can be written as

W−1(x) = 1− 2c− 1

2πi

∫
C

ln Φ(ζ) dζ .

To evaluate Φ(ζ) on C we set Φ(ζ) = Φ
(
−c+ (c− 1)eiθ

)
= Rc(θ) + iIc(θ). Then

one can find

Rc(θ) =1 + xeα(α cosβ + β sinβ)/(α2 + β2) ,

Ic(θ) =− xeα(α sinβ − β cosβ)/(α2 + β2) ,
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where α = α(θ) = 1 + 2(c− 1) sin2(θ/2) and β = β(θ) = (c− 1) sin θ. As a result,
similarly to (48), we can write

W−1(x) = 1−2c+
c− 1

2π

∫ π

0

{
2 arg(Rc(θ) + iIc(θ)) sin θ − ln

(
R2
c(θ) + I2

c (θ)
)

cos θ
}
dθ .

We return to the principal branch and use the result in [24, formula(13)] to write
[29]

W (z) = 1 + (ln z − 1) exp

(
i

2π

∫ ∞
0

ln

(
ln z + t− ln t+ iπ

ln z + t− ln t− iπ

)
dt

1 + t

)
(49)

or

W (z) = 1 + (ln z − 1) exp

{
− 1

π

∫ ∞
0

arg(ln z + t− ln t+ iπ)

1 + t
dt

}
, (50)

where z /∈ [−1/e, 0]. In case of real z = x > 1/e, when the expression ln z + t− ln t
is real and positive (for t ∈ (0,∞)), the formula (50) is simplified and reduced to

W (x) = 1 + (lnx− 1) exp

{
− 1

π

∫ ∞
0

arctan

(
π

lnx+ t− ln t

)
dt

1 + t

}
(51)

or, after integrating by parts

W (x) = 1 + (lnx− 1) exp

{
−
∫ ∞

0

t− 1

π2 + (lnx+ t− ln t)2

ln(1 + t)

t
dt

}
. (52)

We emphasize that the domain x > 1/e of validity of the formulae (51) and (52)
is different from that of (47) and (48).

For the case x ∈ (−1/e, 0), we refer the reader to [24, formulae (32)] where
the principal branch W0 and the branch W−1 are represented in the form of a
combination of two expressions similar to the right-hand side of (50).

Remark 1 We can regard the integral in the formula (49) as an improper integral
depending on parameter p = ln z and consider it in the limit p→∞ (when z →∞).
Since the integrand is a continuous function of two variables t and p in the domain
under consideration and the integral is uniformly convergent with respect to p, we
can take the limit under the integral sign and find that the integral vanishes as the
integrand goes to zero. Then the formula (49) reproduces the asymptotic result
(2).

Finally we note that by use of elementary complex analysis in [16] there is ob-
tained a common closed form representation for all the branches Wk(z) in the
complex z-plane through simple quadratures.

7. Concluding remarks

We have derived various integral representations of the principal branch of the
Lambert W function. Equivalently, we can say that we have established by ex-
plicit construction that W and some functions of W belong to various function
classes. Besides their own importance the derived integral representations have
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some applications. One of them has been mentioned in connection with finding
Nuttall-Bouwkamp integral (12). Other definite integrals appear when taking par-
ticular values of z. For example, integrals (4), (14), (15), (35) taken at z = e yield
new integrals for π.

π =

∫ π

0

v2 + (1− v cot v)2

1 + v csc ve−(1+v cot v)
dv ,

π =

∫ π

−π

v dv

v + e1+v cot v sin v
,

π =
e

e− 1

∫ π

0

v2 + (1− v cot v)2

v csc(v) (v csc(v) + e1+v cot v)
dv ,

π =

∫ π/2

−π/2

[
v2 + (1 + v tan v)2

]
v sin vev tan v−1 dv

cos2 v + v2e2(v tan v−1)
.

Another advantage that can be taken of the obtained results is based on a compar-
ison between different representations of the same function. This reveals equivalent
forms of the involved integrals. In addition, since some of the integrals are simpler
than others, such equations can be regarded as a simplification of the latter. For
example, equating integrals (31) and (4) shows that the former can be simplified
and reduced to the latter. At last we mention that the Pick representations (27),
(30), (31), and (32) can be considered as integrals expressing properties of the
kernel K(z, v) defined by (28).
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