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Abstract. An implementation (in Maple) of the multivalued elementary
inverse functions is described. The new approach addresses the difference
between the single-valued inverse function defined by computer systems
and the multivalued function which represents the multiple solutions of
the defining equation. The implementation takes an idea from complex
analysis, namely the branch of an inverse function, and defines an index
for each branch. The branch index then becomes an additional argument
to the (new) function. A benefit of the new approach is that it helps
with the general problem of correctly simplifying expressions containing
multivalued functions.

1 Introduction

The manner in which computer-algebra systems handle multivalued functions,
specifically the elementary inverse functions, has been the subject of extensive
discussions over many years. See, for example, [5,6,8]. The discussion has centred
on the best way to handle possible simplifications, such as

√
z2 = z ? arcsin(sin z) = z ? ln(ez) = z ? (1)

In the 1980s, errors resulting from the incorrect application of these transforma-
tions were common. Since then, systems have improved and now they usually
avoid simplification errors, although the price paid is often that no simplification
is made when it could be. For example, Maple 18 fails to simplify

√
1− z

√
1 + z −

√
1− z2 ,

even though it is zero for all z ∈ C, see [2,8]. Here a new way of looking at such
problemsis presented.

The discussion of possible treatments has been made difficult by the many
different interpretations placed on the same symbols by different groups of math-
ematicians. Sorting through these interpretations, and assessing which ones are
practical for computer algebra systems, has been an extended process. In this
paper, we shall not revisit in any detail the many past contributions to the
discussion, but summarize them and jump to the point of view taken here.

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 157–167, 2014.
c© Springer International Publishing Switzerland 2014



158 D.J. Jeffrey

1.1 A Question of Values

One question which has been discussed at length concerns the number of val-
ues represented by function names. One influential point of view was expressed
by Carathéodory, in his highly regarded book [4]. Considering the logarithm
function, he addressed the equation

ln z1z2 = ln z1 + ln z2 , (2)

for complex z1, z2. He commented [4, pp. 259–260]:

The equation merely states that the sum of one of the (infinitely many)
logarithms of z1 and one of the (infinitely many) logarithms of z2 can
be found among the (infinitely many) logarithms of z1z2, and conversely
every logarithm of z1z2 can be represented as a sum of this kind (with a
suitable choice of ln z1 and ln z2).

In this statement, Carathéodory first sounds as though he thinks of ln z1 as a
symbol standing for a set of values, but then for the purposes of forming an
equation he prefers to select one value from the set. Whatever the exact mental
image he had, the one point that is clear is that ln z1 does not have a unique
value, which is in strong contrast to every computer system. Every computer
system will accept a specific value for z1 and return a unique ln z1.

The reference book edited by Abramowitz & Stegun [1, Chap 4] is another
authoritative source, as is its successor [15]. They both define, to take one ex-
ample, the solution of tan t = z to be t = Arctan z = arctan z+kπ. When listing
properties, they both give the equation

Arctan(z1) + Arctan(z2) = Arctan
z1 + z2
1− z1z2

. (3)

For z1 = z2 =
√
3, we have Arctan

√
3 + Arctan

√
3 = Arctan(−√

3). For com-
puter users, this is confusing, because their systems return values arctan

√
3 =

π/3 and arctan(−√
3) = −π/3, and most users do not see the difference be-

tween Arctan and arctan. (Below, a new form of (3) is given.) By comparing
the Abramowitz & Stegun definition with the statement of Carathéodory, we
can see that as far as equations are concerned, both sets of authors favour an
interpretation based on interactively selecting one value from a set of possible
ones.

Riemann surfaces give a very pictorial way of seeing multi-valuedness [16,7],
but a question remains whether they can be used computationally [13]. To discuss
these approaches in detail will deflect attention from the implementation here.
Therefore, now that alternative approaches have been noted, they will be set
aside.

Here, an inverse function will have a single value [13]. Further, that single value
will be determined by the arguments to the function and not by the context in
which it finds itself.
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2 A New Treatment of Inverse Functions

The basis of the new implementation is notation introduced in [11]. To the
standard function ln z, a subscript is added:

lnk z = ln z + 2πik .

Here the function ln z denotes the principal value of logarithm, which is the
single-valued function with imaginary part −π < � ln z ≤ π. This is the function
currently implemented in Maple, Mathematica, Matlab and other systems. In
contrast, lnk z denotes the kth branch of logarithm. With this notation, the
statement above of Carathéodory can be restated unambiguously as

∃k,m, n ∈ Z, such that lnk z1z2 = lnm z1 + lnn z2 .

His “and conversely” statement is actually a stronger statement. He states

∀k ∈ Z, ∃m,n ∈ Z, such that lnk z1z2 = lnm z1 + lnn z2 .

In the light of his converse statement, Carathéodory’s first statement could be
interpreted as meaning

∀m,n ∈ Z, ∃k ∈ Z, such that lnm z1 + lnn z2 = lnk z1z2 .

I think the English statement does not support this interpretation, but it may be
supported by the original German. In any event, it shows the greater conciseness
of branch notation.

The principal of denoting explicitly the branch of a multivalued function will
be extended here to all the elementary multivalued functions. In order for the
new treatment to be smoothly implemented in Maple, a system of notation is
needed that can co-exist with the built-in functions of Maple.

2.1 Notation for Inverses

The built-in functions for which we shall be implementing branched replacements
are

– log(z),
– arcsin(z), arccos(z), arctan(z),
– arcsinh(z), arccosh(z), arctanh(z),
– fractional powers z1/n.

Rather than risk confusion by trying to modify the actions of these names within
Maple, we shall leave the built-in functions untouched and work with indepen-
dent, clearly defined and unambiguous notation for the branched functions.

The model we follow is to adapt the notation invfunc used in Maple; Math-
ematica has a similar construction InverseFunction. The most direct presen-
tation is simply to display the definitions, with source code.
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2.2 Subscripts in Maple

A subscript on a function f , as in fk(z), is really an additional argument to the
function, except that instead of placing it in parentheses, as in f(k, z), we choose
subscripting. In Maple, however, the programming is quite different in the two
cases. Thus f(k, z) is coded as

f:= proc (k,z) ... end

and the k and z can be used in the procedure without further programming. A
subscripted function, however, is written as f[k](z), and is an ‘indexed name’.
The procedure is now coded as

f:= proc (z) ... end

and inside the procedure there is a variable available to the program called
procname. If the procedure has been called with an indexed name, then this is
contained in procname and the index, i.e., the subscript, can be retrieved for use
in the procedure by using the op function.

3 Particular Functions

In this section, the inverses of the elementary functions are defined in the new
notation. The implementations use Maple’s indexed names, and in Maple’s 2-D
printing, the indexes appear as subscripts.

3.1 Inverse Sine

The principal branch of the inverse sine function is denoted in Maple by arcsin.
Using this, we define the branched inverse sine by

invsin0 z = arcsin z , (4)

invsink z = (−1)k invsin0 z + kπ . (5)

The principal branch now has the equivalent representation invsin0 z=invsin z=
arcsin z. It has real part between −π/2 and π/2. Notice that the branches are
spaced a distance π apart in accordance with the antiperiod1 of sine, but the
repeating unit is of length 2π in accord with the period of sine.

The Maple code for the function is

invsin := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

1 An antiperiodic function is one for which ∃α such that f(z + α) = −f(z), and α is
then the antiperiod. This is a special case of a quasi-periodic function [14], namely
one for which ∃α, β such that f(z + α) = βf(z).
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elif type(procname, ’indexed’) then

branch := op(procname);

branch*Pi+(-1)^branch*arcsin(z);

else arcsin(z);

end if;

end proc;

The nargs function counts the number of arguments supplied by the user, and
although here the code is restricted to 1 argument, one could allow the branch
number to be passed as an argument instead of as a subscript. Note that the
code is not ‘industrial strength’, and in particular the branch is not tested for
being an integer. Since the code is exploratory, it relies on the user being sensible.
Examples of its use appear below.

3.2 Inverse Cosine

The principal branch has real part between 0 and π, and this is easiest achieved
by setting invcosk z = invsink+1 z − π/2. The code is

invcos := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

elif type(procname, ’indexed’) then

branch := op(procname);

invsin[branch+1](z)-Pi/2;

else arccos(z);

end if;

end proc;

3.3 Inverse Tangent

The principal branch has real part from −π/2 to π/2, and the kth branch is
invtank z = invtan z + kπ. As code:

invtan := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

elif type(procname, ’indexed’) then

branch := op(procname);

branch*Pi+arctan(z);

else arctan(z);

end if;

end proc;

The two-argument inverse tangent function has been implemented in many com-
puter languages. It is a synonym for arg, in that arg(x + iy) = arctan(y, x) for
x, y ∈ R. It can be described using the branches of invtan as

arctan(y, x) = invtank(y/x) ,
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where k = H(−x) sgn y, and H is the Heaviside step function. For x small this
is inaccurate, when using invcot is better.

3.4 The Logarithm

The logarithm is the inverse of the exponential function, and therefore our con-
vention would suggest implementing the branched version using invexp. This,
however, seems too radical for acceptance, so we use loge instead. Another possi-
bility might seem to be Log, but this is unsatisfactory because textbooks cannot
agree on the definition of Log. Also Mathematica uses Log[x] as its standard
log function, and may in the future have its own branch implementation.

loge := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

elif type(procname, ’indexed’) then

branch := op(procname);

ln(z) + 2*Pi*I*branch;

else ln(z);

end if;

end proc;

3.5 Inverse Hyperbolic Functions

A common point of contention in notation for inverse hyperbolic functions is
whether to write arcsinh or arsinh, and similarly for the other functions. The
point of the debate being that the geometrical interpretation of inverse sinh is an
area, not an arc. Maple and Mathematica use the former notation to the chagrin
of more enlightened authors [3,9] who prefer the latter. They argue that arc

should not be merely a synonym for inverse. The convention here allows us to
avoid this argument by using the inv prefix. We use the Russian abbreviations
for the primary functions to save typing. Thus we define in the obvious way
invsh[k](z), invch[k](z), invth[k](z). We save space by not listing them.

3.6 Fractional Powers

The principal branch of z1/n is defined by exp( 1n ln z), and replacing ln z by
lnk z gives the branched function. The standard notation for roots and fractional
powers does not leave an obvious place for the branch label, and most obvious
names are already used by Maple or Mathematica. We use the name invpw,
meaning inverse (integer) power. The Maple code defines invpw[k](z,n), where
the subscript is the branch, as usual, while the fractional power is 1/n. Thus it is
modelled on the Maple surd function. Unlike the other inverse functions, there
are only n distinct values, but we allow k to be any integer.

Since square root is so common, it is coded separately as invsq[k](z), and
it can be displayed in traditional notation as (−1)k

√
z.
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4 Applications

We now demonstrate some uses of the new notation.

4.1 Plotting

With the new functions, we can easily plot branches. Figure 1 shows plots pro-
duced by the Maple commands

> plot([invsin[-1](x),invsin(x),invsin[1](x)],x=-1 .. 1,

linestyle=[2,1,3]);

> plot([invtan[-1](x),invtan(x),invtan[1](x),invtan[2](x)],

x=-5..5, discont = true, linestyle = [2, 1, 3, 4]);

Fig. 1. The branches of inverse sine and inverse tangent plotted taking advantage of
branch notation

4.2 Identities

In order to express identities containing inverse functions correctly, we need the
unwinding number,

K(z) =

⌈
z − π

2π

⌉
,

defined in [5] (rather than in [6] where the sign is different). Note that the
unwinding number is a built-in function in Maple, called unwindK. This imme-
diately gives us

lnk e
z = z − 2πiK(z) + 2πik . (6)

Note the special case lnK(z) e
z = z.
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Consider an identity one might see in a traditional treatment:

cosx =
√
1− sin2 x , (7)

where the author would add “and the branch of the root is chosen appropriately”.
Using the branched root, we write the more precise

cosx = invsq[K(2ix)](1 − sin2 x) = (−1)K(2ix)
√
1− sin2 x . (8)

We can contrast the two approaches in Maple with the command

> plot([ sqrt(1-sin(x)^2), invsq[unwindK(2*x*I)](1-sin(x)^2)],

x = -7 .. 7, linestyle = [2, 1]);

The resulting plot is given in figure 2.

Fig. 2. The graph of
√

1− sin2 x using branch notation for square root

We return to the Abramowitz and Stegun [1] ‘identity’ (3). The branch prob-
lems with this equation are neatly displayed by the Maple command

> plot3d([arctan(x)+arctan(y), arctan((x+y)/(1-x*y))],

x = -2 .. 2, y = -2 .. 2, orientation = [-45, 45, 0])

The more precise identity is

invtan(x) + invtan(y) = invtank
x+ y

1− xy
, where k = H(xy − 1) sgn(x) , (9)

and H is the Heaviside step. A more complicated example from [1] is their
identity for Arcsinx+Arcsin y, which becomes

invsinx+ invsin y = invsin[k]
(
x
√

1− y2 + y
√
1− x2

)
, (10)

k = H(x2 + y2 − 1)(sgnx+ sgn y)/2 .

Here the branch of invsin is allowed to vary, but there might be another formula
which includes variable branches of square root.
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Fig. 3. A plot of the sum of two inverse tangents and the usual formula for their sum

As a final identity, we consider formula (4.4.39) in [1].

Arctan(x+ iy) = kπ +
1

2
arctan

2x

1− x2 − y2
+

i

4
ln

x2 + (y + 1)2

x2 + (y − 1)2
.

To turn this identity into something that computer-algebra systems can use, one
should decide what to do with k. This can be replaced by

invtank(x+ iy) =
1

2
invtann

2x

1− x2 − y2
+

i

4
ln

x2 + (y + 1)2

x2 + (y − 1)2
,

where n = 2k + sgn(x)H(x2 + y2 − 1).

4.3 Calculus

Calculating the derivative of an inverse function is a standard topic in calculus.
The results in the textbooks are restricted to the principal branches of the func-
tions. It is possible, however, to generalize results to any branch. For example

d

dx
invsink x =

1

cos(invsink x)
=

(−1)k√
1− x2

.

Integration by substitution is a well-known application of inverse functions.
A specific difficulty has been the application of the substitution u = tan 1

2x in
integrals such as

∫
3 dx

5− 4 cosx
=

∫
6 du

1 + 9u2
= 2 arctan(3 tan 1

2x) . (11)

The right-hand side is discontinuous, as has been pointed out in [12,10]. The
correction to the usual integration formula [12] can be rewritten in the new
notation as ∫

3 dx

5− 4 cosx
= 2 invtanK(ix)(3 tan

1
2x) . (12)
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The contrast is illustrated in figure 4 by the plot

> plot([ 2*invtan[unwindK(I*x)](3*tan((1/2)*x)),

2*arctan(3*tan((1/2)*x))], x=-3..9,linestyle=[2,1],

discont=true);

Fig. 4. A graph of the discontinuous and continuous integrals discussed in (11) and (12)

5 Conclusions

The focus here has been on the implementation of multivalued inverse functions
in a computer-algebra system. The development of the notation, and of tools
such as the unwinding number, has been motivated by the idea that traditional
treatments of multivalued functions are not precise enough. Too often, decisions
on branch choices are avoided by texts, the avoidance being often covered by
phrases such as “taking an appropriate branch”. The notation here allows one
to state precisely which branch of a function should be used, and the notation
also reminds one that such choices are important.

After branch information is added to existing equations, they are typically
longer than before. This means that people looking for elegance rather than
strictness will find little benefit in the new approach and notation. Looking back
at Carathéodory’s discussion of (2), we can see exactly the desire for elegance
of presentation bringing with it the cost of impreciseness.

Outside computer-algebra systems, the notation also offers benefits. For exam-
ple, it should make the topic easier for students. We already teach students that
y = x2 implies x = ±√

y, and we teach calculus students that dy/dx = 1 implies
y = x + K, where K is a constant. So solutions to equations in which arbitrary
elements appear are already part of a student’s education. By using branch index-
ing, we can bring all the elementary inverse functions into a single pattern, and
both students and computers are forced to confront branch choices explicitly.
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There are many multivalued functions in mathematics, and here we have
considered only the elementary functions. The principles developed here can be
found already in Maple to varying degrees. The Lambert W function has been
fully implemented using the same ideas of explicit branches as here. Maple’s
RootOf construction uses an index to specify different roots of an equation.
Although there is a tendency to think of RootOf as specifying values rather
than functions, there is no reason not to use it to define a function, although its
generality will often make the branch structure of the defined function difficult
to understand. The current approach is one of a number of possibilities for
correct manipulation in a computer-algebra system. It fits together with the
unwinding number approach happily and offers other ways of presenting and
working with expressions. As with the unwinding number, there remains much
scope for further development.
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