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Abstract. A combination of symbolic and numerical methods is used to extend
the reach of the purely symbolic methods of physics. One particular physics
problem is solved in detail, namely, a computation of the electric potential
in the space between a sphere and a containing cylinder. The potential is
represented as an infinite sum of multipoles, whose coefficients satisfy an
infinite system of linear equations. The system is solved first symbolically
by using a series expansion in a critical ratio, namely the ratio of the sphere
radius to cylinder radius. Purely symbolic methods, however, cannot complete
the solution for two reasons. First, the coefficients in the series expansion can
only be found numerically, and, second, the convergence rate of the series
is too slow. The combination of symbolic and numerical methods allows the
singular nature of an important special case to be identified.
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1. Introduction

Many problems in theoretical physics are solved using purely symbolic methods.
Such problems, however, are usually restricted to simple situations, for example, a
sphere falling slowly through an infinite fluid, or flow past a two-dimensional air-
foil. In contrast, symbolic methods have little success with more realistic problems.
For example, consider the problem of trying to calculate the flow of a fluid around
an object in a tube. The traditional symbolic methods of fluid mechanics were ap-
plied by Happel and Brenner [2], who made a lengthy symbolic, but approximate,
calculation for a small sphere inside a much larger tube. The problem of a sphere of
a reasonable size cannot be solved accurately by their methods. In addition, their
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calculation was restricted to particles of spherical shape. With these observations
in mind, supporters of purely numerical methods argue that symbolic methods are
not capable of contributing efficiently to the solution of flow problems like these.
This implies that computer systems such as Maple, which facilitate symbolic ma-
nipulation, are equally incapable of contributing to flow problems. Further, given
progress in the automatic generation of computational grids and computational
schemes for numerical methods, there is a danger that symbolic methods will be
largely pushed out of many areas of physics and engineering, and remain present
only in the initial set up of a problem.

In response to this situation, we present here a symbolic–numeric approach to
one class of physics problems, which we describe with the aid of a specific problem,
namely the electric field around a non-conducting spherical bubble in a cylindrical
wire, a problem first considered in [1]. The starting point is an expansion in eigen-
functions, a classical method of 19th century physics. By itself this fails because
the coefficients cannot be found in closed form. Therefore one tries to compute
them numerically. This is still not very successful because the series converge very
slowly and further analysis is needed. By combining a numerical calculation of the
coefficients with a symbolic analysis of the series, we arrive at a useful expression
for the resistance of the wire.

The new method offers advantages both when compared with purely numer-
ical methods, and when compared with purely symbolic methods. On the one
hand, when compared with purely symbolic methods, the present methods get a
solution, which otherwise is beyond reach. On the other hand, when compared
with numerical solutions, the present solution retains symbolic information, and
moreover very useful information. Specifically, there is a ratio of lengths in the
specification of the problem, namely the ratio of the diameter of the spherical
bubble to the diameter of the tube, and this ratio is present as a symbolic pa-
rameter, which means that the solution obtained is valid for all ratios, whereas
a numerical solution requires a complete repetition of the solution procedure. A
further advantage of the symbolic–numeric approach is the fact that the problem
contains a singular limit. When the bubble nearly fills the tube, i.e., when the
ratio of diameters approaches 1, there can be singular effects. The presence of a
symbolic parameter in the solution allows the singular behaviour to be studied
analytically.

Another aspect of the problem should be noted. The information required
from the solution to the problem has an important influence on the solution tech-
nique. Here we are interested in the effect of the bubble on the resistance of the
wire. Thus we need to calculate one quantity, namely the additional resistance or
equivalently the increased effective length. It turns out that this quantity can be
extracted neatly from the solution. If we had been interested in something differ-
ent, for example, the details of the electric field around the bubble, the current
method may be of less interest. It is one of a number of techniques being developed
to extend the role of symbolic computation in Science and Engineering.
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Figure 1. The coordinate systems for the sphere inside the cylinder.

Laplace’s equation described the electric potential associated with an elec-
tric field, and has been studied in the space outside a sphere and inside a cylinder
by Linton [5]. Linton used the method of multipoles to derive a solution of the
problem. His technique consists of first constructing a set of functions that satisfy
the equation and all the boundary conditions except the one on the sphere, and
then representing the solution as a superposition of all the functions in the set.
Satisfying the condition on the sphere leads to an infinite set of linear equations
in the coefficients of the solution. The new feature of the present paper consists in
expressing the unknown coefficients as series expansions in the geometrical param-
eter referred to above: the ratio of the sphere diameter to the cylinder diameter.
The solution is exact for all diameter ratios, but its rate of convergence slows down
in the limit of the particle blocking the tube.

When the particle nearly blocks the tube, a different approach can be used.
An asymptotic analysis allows us to solve the problem approximately. By compar-
ing the general solution and the asymptotic solution, we predict the behaviour of
the coefficients in the general solution, and thereby improve its rate of convergence.

2. Solution for All Diameter Ratios

We consider the electric field present in a cylindrical tube of radius d containing a
sphere of radius a situated on the axis. The field is produced by a potential gradi-
ent, which causes a current to flow through the tube; equivalently, the electric field
tends to a constant at infinity. We use the cylindrical coordinate system (r, z, φ)
and the spherical coordinate system (ρ, θ, φ) which both have their origins at the
centre of the sphere and are rescaled so that the cylinder boundary corresponds
to r = 1. The spherical boundary is then given by ρ = λ where λ is the ratio of
the sphere radius to the cylinder radius. The axial symmetry is used to suppress
reference to the azimuthal angle φ. The two systems of coordinates are connected
by the relations z = ρ cos θ, r = ρ sin θ.

We introduce an electric potential of the form z+Φ. Because of the linearity
of Laplace’s equation, we can scale the potential so that the electric field tends to
unity at infinity. The disturbance potential Φ must satisfy Laplace’s equation in
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together with the boundary conditions

∂Φ

∂r
= 0 , on r = 1 , (2.1)

∂Φ

∂ρ
= − cos θ , on ρ = λ , (2.2)

∂Φ

∂z
→ 0 , as |z| → ∞ . (2.3)

The last equation is not equivalent to Φ→ 0 as might be expected, but rather to
Φ→ α sgn z , as |z| → ∞ , (2.4)

where α depends on λ and is in general non-zero [4]. The consequences of this for
the convergence of the series used below are discussed in [4].

To solve the problem above we use dual expansions. First we express the
solution in cylindrical coordinates as a linear combination of functions satisfying
the equation and the boundary conditions (2.1) and (2.4). Then we transform the
solution into spherical coordinates and apply the condition (2.2).

Starting in cylindrical coordinates, we expand the perturbed potential as a
series by using the usual separation of variables. Thus assuming Φ = R(r)Z(z)
(the azimuthal angle φ does not enter because of axisymmetry), we find that
R(r) is a linear combination of Bessel functions K0(tr) and I0(tr), where t

2 is
the separation constant. Similarly Z(z) is a combination of sin tz and cos tz. To
satisfy boundary condition (2.1), we must combine the Bessel functions according
to K0(tr) + [K1(t)/I1(t)]I0(tr). Symmetry in z requires that the cos tz term is
dropped. Then integrating over all values of t, we obtain

Φ =

∞�
n=1

An

2n
Φn (2.5)

where

Φn =
2λ2n+1(−1)n+1
π(2n− 1)!

 ∞
0

t2n−1
�
K0(tr) +

K1(t)

I1(t)
I0(tr)

�
sin(tz)dt . (2.6)

The following identities allow the transformation between the potential in
cylindrical coordinates (r, z) and in spherical coordinates (ρ, θ):

1

ρ2n
P2n−1(cos θ) =

2(−1)n+1
π(2n − 1)!

 ∞
0

t2n−1K0(tr) sin(tz)dt ,

I0(tr) sin(tz) =

∞�
n=1

(−1)n+1
(2n− 1)! (tρ)

2n−1P2n−1(cos θ) .
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By applying these identities we deduce

Φ =

∞�
n=1

An
2n

λ2n+1

ρ2n
P2n−1(cos θ)

+

∞�
m,n=1

2An(−1)n+m
π(2n)!(2m− 1)!λ

2n+1ρ2m−1P2m−1(cos θ)
 ∞
0

t2(n+m−1)
K1(t)

I1(t)
dt .

From the boundary condition (2.2) and the orthogonality of the Legendre functions
we obtain an infinite system of algebraic equations for An

An +

∞�
m=1

λ2n+2m−1AmBmn = δ1n (n = 1, 2, . . .) (2.7)

with the coefficients Bmn given by

Bmn =
2(−1)n+m+1
π(2m)!(2n− 2)!

 ∞
0

t2(n+m−1)
K1(t)

I1(t)
dt

=
2(−1)n+m+1

π(2m)!(2n− 2)!(2n+ 2m− 1)
 ∞
0

t2(n+m−1)

I21 (t)
dt .

This set of equations was obtained in [1] before computer algebra was readily
available. However, the derivation was checked using Maple, but a completely
automatic program was not written. To solve the equations, one could truncate
them and tackle them numerically at this point, but to do so would be to return
to a purely numerical solution, and then it would be dubious whether all of the
manipulations above were worthwhile, or whether a finite-element scheme would
not be just as good. Therefore, we solve the system of equations by expressing
each coefficient as a series in λ; this choice is suggested by the appearance of the
term λ2n+2m−1 in (2.7).

An(λ) =

∞�
s=0

Knsλ
s . (2.8)

Substituting this into (2.7) and collecting powers of λ, we obtain a recurrence
relation for the Knp coefficients:

Knp +

(p+1−2n)/2�
s=1

Ks(p+1−2s−2n)Bsn = 0 , for n ≥ 1, p ≥ 2n+ 1 , (2.9)

and

Kn0 = δn1 , for n ≥ 1
Knp = 0 , for n ≥ 1, 2n ≥ p ≥ 1.

The numerical solution of (2.9) for the numbers Knp is straightforward. No-
tice that although the problem contains the parameter λ, these are pure numbers
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independent of λ. In order to speed up the computation and to improve its reli-
ability, we can integrate the dominant contribution to the integral symbolically.
Thus, we write ∞

0

t2(n+m−1)

I21 (t)
dt =

π(2n− 1)!
22n−1

+

 ∞
0

t2(n+m−1)
�
I−21 (t)− 2πte−2t

�
dt .

It can be remarked that supporters of computer algebra frequently say that their
systems are not purely symbolic, but numeric as well. This aspect of Maple made
the calculation of the coefficients very easy because the integrals could be evaluated
easily using Maple’s numerical integration.

It was stated in the introduction that the solution, which now has been pre-
sented, is attractive because we want only the effective resistance to an electric
current flowing past the bubble. According to (2.4), the difference in potential
increases by the amount 2α, which is a priori unknown. By considering the as-
ymptotic behaviour of the integral in (2.6), we find that for n = 1 it is asymptotic
to sgn z and for n > 1 it tends to 0 (details in [4]). Therefore α depends only on
A1. The full analysis gives

∆Φ = 2α = 2λ3A1 . (2.10)

Thus the resistance depends only on the single coefficient A1, and therefore will be
expressed as a single series with computable coefficients. The above solution has
the advantage that a single computation of the system (2.9) solves the problem
for all λ.

An apparent disadvantage is the fact that the series diverges at λ = 1, which
corresponds to the sphere filling the tube. For values of λ near the radius of
convergence, the rate of convergence of (2.8) becomes very slow and many terms
is needed in the series. However, this effect has a physical basis: the problem
is singular when the sphere fills the tube, and even purely numerical methods
struggle in this case. This apparent disadvantage, however, can be turned into an
advantage in the context of symbolic-numeric computation. We can now analyze
the singular limit and match the limit to the general solution. The result is a
new series that converges everywhere numerically and which displays the singular
behaviour symbolically. This is only possible in a symbolic-numeric context.

Asymptotic Behaviour

We want to study the asymptotic nature of the solution when the sphere is almost
the same diameter as the cylinder. The gap between the sphere and the cylinder
is measured by the non-dimensional parameter ε = 1− λ which is assumed much
smaller than 1.

We proceed by considering a stretching transformation of the cylindrical co-
ordinates in the gap, based on the physical fact that the effects across the small
gap dominate the effects along it. A similar idea in rather different geometry [3]
suggests that the proper transformation is

R = (1− r)/ε, Z = z/√ε.



A Symbolic-Numeric Approach 355

The surface of the sphere in the new coordinates has the expansion

R = 1 +
1

2
Z2 + ε

�
Z2

2
+
Z4

8

�
+O(ε2).

We will apply the boundary condition on this approximation rather than on the
exact surface, since the exact expression contains square roots.

The scaled Laplace’s equation inside the gap is given by

∂2Φ

∂R2
+ ε

�
∂2Φ

∂Z2
− 1

1− εR ·
∂Φ

∂R

�
= 0 (2.11)

and the boundary condition on the cylinder by

∂Φ

∂R
= 0 on R = 0.

In order to deduce the boundary condition on the obstacle we notice that

sin θ =
1− εR
1− ε , cos θ =

√
εZ

1− ε on ρ = 1− ε
and derive the scaled boundary condition on the sphere

∂Φ

∂R
− ε
�
R
∂Φ

∂R
+ Z
∂Φ

∂Z

�
= ε3/2Z. (2.12)

We apply Gauss’ theorem between z → −∞ and z = 0 and find that Φ = O(ε−1/2)
in the gap. Consequently, it is natural to look for an expansion of the potential of
the form

Φ(R, Z) = ε−
1
2Φ0(R, Z) + ε

1
2Φ1(R, Z) + · · · .

The unknown functions Φn are derived by replacing the above expansion in the
problem (2.11)-(2.12) and by matching the expansions inside and outside the gap.
The first approximation leads to the following problem for Φ0

∂2Φ0
∂R2

= 0,

∂Φ0
∂R

= 0 on R = 0,

∂Φ0
∂R

= 0 on R = 1 +
Z2

2
,

which has the solution Φ0 = K(Z). The next step in the approximation gives

∂2Φ1
∂R2

= −K��(Z),
∂Φ1
∂R

= 0 on R = 0,

∂Φ1
∂R

= ZK�(Z) on R = 1 +
Z2

2
.

(2.13)
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From (2.13) we find that K must satisfy

(1 +
1

2
Z2)K�� + ZK� = 0

and using the antisymmetry with respect to Z, we derive Φ0 = C · arctan(Z/
√
2).

The constant C should be obtained from a matching with the solution outside the
gap, but that would require deriving a solution in the ‘outer’ region beyond the
gap. We can avoid this by using Gauss’ theorem to determine the constant C:

Φ =
1√
2ε
· arctan Z√

2
+O(ε1/2). (2.14)

Matching General Solution with Asymptotic Solution

The asymptotic solution (2.14) behaves asymptotically like sgn z with respect to
z. Therefore, from (2.10), we obtain

A1 =
π

2
√
2
(1− λ)−1/2 + O((1− λ)1/2).

Thus, if we expand the asymptotic solution with respect to λ, we obtain the series

A1 =
π

2
√
2

∞�
p=1

(−1)p
�−1/2
p

�
λp + O((1− λ)1/2).

We also made the assumption for the general solution that the coefficient expands
as (2.8). By matching the two forms of the solution we get the prediction

K1p
π

2
√
2
(−1)p�−1/2p � → 1 as p→∞ .

This prediction is tested in Fig. 2, where it can be seen that the agreement is very
good after about 50 terms. A selection of the same data expressed in tabular form
is given in Table 1.

The application that suggested this calculation is the change in the electrical
resistance of a wire owing to impurities in the metal, and for this only the coefficient
A1 is of interest. The extra resistance is often expressed as an effective increase in
the length of the cylinder, and this extra length is given by

∆L = 2λ3A1.

Since we know the singular behaviour symbolically, we can extract it from the
numerical coefficients and obtain a more reliable calculation. We write

A1 =

∞�
n=0

K1nλ
n (2.15)

=
π√

8(1− λ)1/2 +
∞�
n=0

�
K1n − π√

8
(−1)n

�−1/2
n

�	
λn. (2.16)
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Figure 3. The computed resistance increase as a function of λ
for values close to 1. The upper curve shows the correct singular
behaviour which is expressed symbolically; the lower curve shows
the purely numerical result.
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Table 1. A comparison of the computed and predicted coeffi-
cients in the series for the increased resistance of a conducting
cylinder due to the presence of a spherical bubble.

n K1n (−1)nπ�−1/2n �/√8 Difference
95 0.063370 0.064209 -0.000839
96 0.062993 0.063876 -0.000883
97 0.062742 0.063547 -0.000805
98 0.062402 0.063222 -0.000820
99 0.062086 0.062903 -0.000817
100 0.061827 0.062587 -0.000760

In Table 1, the last column shows how much smaller the new difference coefficients
are, and Fig. 3 shows the effect of extracting the singularity explicitly on the
results.

3. Conclusions

This paper has shown that by combining symbolic and numeric techniques, we can
obtain new forms for the solution of problems arising in physics. The method used
here can be extended to other equations of theoretical physics, such as Stokes’s
equations and Helmholtz’s equation. The principles, although probably not the
detailed method, can be extended to other geometries. In general, purely numer-
ical methods will remain more flexible than the present one, but what has been
demonstrated is that when symbolic information can be returned to a solution,
there is a gain in numerical accuracy and in our understanding of the solution. One
pleasing feature of the current method is that the two solutions used were derived
independently, and hence the agreement between the two ways of computing the
coefficients is a good check on the correctness of the intermediate working.
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