
Symbolic-Numeric Computation

D. Wang and L. Zhi, Eds.

Trends in Mathematics, 335–347
c� 2007 Birkhäuser Verlag Basel/Switzerland

Symbolic Computation Sequences
and Numerical Analytic Geometry
Applied to Multibody Dynamical Systems

Wenqin Zhou, David J. Jeffrey and Greg J. Reid

Abstract. The symbolic-numeric computing described here consists of an ex-
tensive symbolic pre-processing of systems of differential-algebraic equations
(DAE), followed by the numerical integration of the system obtained. The
application area is multibody dynamics. We deal symbolically with a DAE
system using differentiation and elimination methods to find all the hidden
constraints, and produce a system that is leading linear (linear in its leading
derivatives). Then we use LU symbolic decomposition with Large Expression
Management to solve this leading linear system for its leading derivatives,
thereby obtaining an explicit ODE system written in terms of computation
sequences obtained from using theMaple package LargeExpressions. Subse-
quently the Maple command dsolve is applied to this explicit ODE to obtain
its numeric solution. Advantages of this strategy in avoiding expression explo-
sion are illustrated and discussed. We briefly discuss a new class of methods
involving Numerical Algebraic and Analytic Geometry.

Mathematics Subject Classification (2000). Primary 70E55; Secondary 68U01;
Tertiary 15A09.

Keywords. LU symbolic decomposition, large expression management, dif-
ferential elimination, DAE, computation sequence, straight line programme,
hidden constraint, computer algebra.

1. Introduction

In the study of multibody dynamics, both purely symbolic and purely numeric
methods separately suffer drawbacks. The symbolic methods encounter large ex-
pressions and the numerical methods are very slow in formulating the system.
Examples of the applications of multibody dynamics are robot arms, vehicle sus-
pensions, and automatic barriers. A modern robot arm, such as the Space Shuttle’s
Remote Manipulator System (RMS, or Canadarm) consists of several rigid bodies

336 W. Zhou, D.J. Jeffrey and G.J. Reid

(the arm segments and the end effectors) linked by joints. Therefore the systems
have at least 7 degrees of freedom, and typically more. In order to simulate the
behaviour of systems like these, a number of programs have been developed that
automatically generate the equations of motion for the system from its engineering
description [3]. Several computer-algebra based packages have been developed, for
example Dynaflex and Symofros, that will generate the equations of motion
in symbolic form. At present, these equations are handed over to purely numerical
systems for integration as soon as the symbolic system has generated the equations.

What is described in this paper is a closer coupling of the symbolic analysis
of the mechanical system and the final numerical integrations used by a simula-
tion. The coupling takes the form of a symbolic pre-processing of the equations
that improves the efficiency of their numerical solution. This increased interaction
between the symbolically based part of the computation and the numerical part
deserves to be called a “symbolic–numeric” calculation, we feel, even though the
calculation is quite different from the numerical polynomial algebra [4] that has so
far been the subject covered by the description “symbolic–numeric computation”.

The equations describing the dynamics of a multibody system take the gen-
eral form

M(t, q, q̇)q̈ +ΦTq λ = F (t, q, q̇) , (1)

Φ(t, q) = 0 . (2)

Here, q is a vector of generalized co-ordinates, M(t, q, q̇) is the mass matrix, Φ is a
vector of the constraint equations and λ is a vector of Lagrange multipliers [1, 2]:

Φ =

 Φ
1

...
Φm

 , Φq =

 Φ
1
q1
· · · Φ1qn

...
...

...
Φmq1 · · · Φmqn

 , λ =

 λ
1

...
λm

 .
The Lagrange multipliers λ can be interpreted as the forces that the joints must
exert between the elements in order to enforce the geometrical constraints they
impose.

These symbolic models are too complicated to be solved symbolically, both
because of their nonlinearity and because of the number of equations. However
there is still the possibility of symbolically pre-processing them before attempting
a numerical solution. It can be noted from the general form of the equation system
(1)–(2) that it is differential-algebraic (DAE), with the numerical difficulties that
that entails. Suitable objectives for the pre-processing include the simplification
of the system and the determination of all constraints in order to facilitate the
subsequent numerical simulation of the system. More specifically, we show below
that we can convert the system to a purely differential one, and moreover separate
the constraint forces λ from the simulation variables q. Our primary tool for this
is the RifSimp package, which uses differentiation and elimination methods to
simplify any over-determined polynomially nonlinear PDE or ODE system and to
return a canonical differential form [7].

Symbolic Computation Sequences and Numerical Analytic Geometry 337

Direct application of the RifSimp package to multibody systems reveals that
it has difficulty handling the large systems generated by Dynaflex. We use Im-
plicit Reduced Involutive Form (IRIF) to assist in alleviating such large expression
swell problems [10]. Implicit RIF form is converted to RIF form by symbolically
solving the IRIF for its leading linear derivatives. In particular we use symbolic LU
decomposition with large expression management to obtain RIF form, expressed
in terms of computation sequences.

In this paper, we use the simple example of a two-dimensional slider crank
to illustrate our approach to the symbolic-numeric solving of this kind of DAE
system. After receiving the DAE model of the slider crank from Dynaflex we
first use implicit RifSimp to compute all the hidden constraints of this higher
index DAE, by reducing it to an index one or zero DAE system. The details are
given in Sects. 2 and 3. Then in Sect. 4, we use symbolic LU matrix factoring
with large expression management to get the canonical form for the differential
equations, which helps the numerical integration. Using these symbolic equations
with computation sequences, we illustrate the numerical simulation in Sect. 5.
Finally in Sect. 6, we discuss some new ideas for solving the constraints to obtain
consistent initial values for the integration. It should be emphasized that each of
the sub-tasks described here are fully algorithmic and automated computations.
Their integration into a single piece of software is in principle straightforward.

2. Two-Dimensional Slider Crank

Space limitations prevent us from describing a realistic mechanical system, both
because the system description would take up significant space, and also because
the equations generated by Dynaflex would by too lengthy for the reader to fol-
low. The two-dimensional slider crank is a simple example of a closed-loop system
with qT = (θ1, θ2)

T where θ1 = θ1(t) and θ2 = θ2(t) are the angles shown in Fig. 1.
The system is given by (1)–(2) where:

M =

�
l21(
1
4m1 +m2 +m3) + J1 −l1l2 cos(θ1 + θ2)(12m2 +m3)−l1l2 cos(θ1 + θ2)(12m2 +m3) l22(

1
4m2 +m3) + J2

	
, (3)

X

Y

1 2

m
m1

2

m
3

A

B

C

D

Figure 1. The two-dimensional slider crank. The arm of length
l1 and mass m1 rotates while the mass m3 attached to the end of
the arm of length l2 moves left and right. Each arm has mass mi
and moment of inertia Ji, for i = 1, 2.

338 W. Zhou, D.J. Jeffrey and G.J. Reid

F =

�
−l1g(12m1 +m2 +m3) cos θ1 − l1l2θ̇2

2
sin(θ1 + θ2)(

1
2
m2 +m3)

l2g(
1
2
m2 +m3) cos θ2 − l1l2θ̇12 sin(θ1 + θ2)(12m2 +m3)

�
, (4)

and there is a single constraint equation between the angles:

Φ = l1 sin θ1 − l2 sin θ2 = 0 . (5)

Therefore, ΦTq λ in (1) is given by Φ
T
q λ =

�
l1 cos θ1
−l2 cos θ2

�
λ. Note that in this ex-

ample, λ is a scalar. Thus, in addition to generating the constraint (5), Dynaflex
automatically generated the constraint force λ(t). For this example, the challenge
now is to analyze the equations with computer algebraic methods such asRifSimp.

3. Implicit Reduced Involutive Form

We use implicitRifSimp to get all hidden constraints in the multibody dynamical
general model (1)–(2).

Definition [Implicit Reduced Involutive Form]. Let ≺ be a ranking. Then a system
L = 0, N = 0 is said to be in implicit reduced involutive form if there exist
derivatives r1, . . . , rk such that L is leading linear in r1, . . . , rk with respect to ≺
(i.e. L = A[r1, . . . , rk]

T − b = 0) and
[r1, . . . , rk]

T = A−1b , N = 0 , det(A) �= 0 (6)

is in reduced involutive form.

This form is of interest because computing A−1 symbolically in practice can
be very expensive. Sometimes implicit rif-form can be obtained very cheaply, just
by appropriate differentiation of the constraints.

To convert a system of general form (1), (2) with non-trivial constraints
to implicit reduced involutive form, one would have to at least differentiate the
constraints twice [10]. Carrying this out we obtain

Mq̈ + ΦTq λ = F (t, q, q̇), (7)

D2tΦ = Φq q̈ +Hq̇ + 2Φtqq̇ + Φtt = 0, (8)

DtΦ = Φq q̇ +Φt = 0, (9)

Φ(t, q) = 0, (10)

where Φtq =
∂Φq
∂t , Φtt =

∂2Φ
∂t2 and

H =

�
i Φ
1
q1qi q̇i · · ·

�
i Φ
1
qnqi q̇i

...
...

...�
i Φ
m
q1qi q̇i · · ·

�
i Φ
m
qnqi q̇i

 .
We now show:

Symbolic Computation Sequences and Numerical Analytic Geometry 339

Theorem [10]. Consider the ranking ≺ defined by q ≺ q̇ ≺ λ ≺ q̈ ≺ λ̇ ≺ ...q ≺ · · ·
where the dependent variables q, λ are ordered lexicographically q1 ≺ q2 ≺ · · · and
λ1 ≺ λ2 ≺ · · · . The system (7), (8), (9), (10) is in implicit rif-form with A, b,
[r1, . . . , rk]

T in the definition above given by

A =

�
M ΦTq
Φq 0

	
, b =

�
F (t, q, q̇)

−Hq̇ − 2Φtq q̇ − Φtt
	
, [r1, . . . , rk]

T =

�
q̈
λ

�
(11)

and N = {Φ = 0, Φq q̇ +Φt = 0}, det(A) �= 0.
Applying this to the slider crank, with the ranking θ1 ≺ θ2 ≺ θ̇1 ≺ θ̇2 ≺ λ ≺

θ̈1 ≺ θ̈2 ≺ λ̇ ≺ · · · , we obtain the implicit rif-form for the system:
AX = b. (12)

Here

A =

 l
2
1

�
1
4
m1 +m2 +m3

�
+ J1 −l1 l2M cos θ3 l1 cos θ1

−l1 l2M cos θ3 l2
2
�
1
4m2 +m3

�
+ J2 −l2 cos θ2

l1 cos θ1 −l2 cos θ2 0

 ;

b =

 −l1 g
�
1
2m1 +m2 +m3

�
cos θ1 − l1 l2M θ̇22 sin θ3

l2M g cos θ2 − l1 l2M θ̇12 sin θ3l1 sin θ1θ̇12 − l2 sin θ2θ̇22

 ;
XT = [r1, r2, r3]

T = [θ̈1, θ̈2, λ]
T

where for the sake of a compact presentation, we have used M = 1
2m2 +m3 and

θ3 = θ1 + θ2. The constraints are

Φ = l1 sin θ1 − l2 sin θ2 = 0, (13)

DtΦ = l1 cos θ1θ̇1 − l2 cos θ2 θ̇2 = 0. (14)

We note that neither the matrix A, nor vector b include the dependent vari-
able λ(t), which was generated by Dynaflex. Because of this, the ode system with
constraints (12), (13), (14), can be symbolically solved separately for the variables
θ1(t), θ2(t).

4. Explicit Reduced Involutive Form with Large Expression
Management

Above, we obtained the implicit rif-form for the slider crank as (12), (13), (14).
We could in principle symbolically invert the matrix A using Maple, and get the
explicit rif-form, but Maple will give a huge output for A−1 and require a lot
of memory and computation time. Therefore, we have used symbolic inversion
using large expression management (LEM). A full discussion of large expression
management will be given elsewhere. Here we give a brief outline.

340 W. Zhou, D.J. Jeffrey and G.J. Reid

We have used the Maple package LargeExpressions which is based on
tools first developed for perturbation calculations in fluid mechanics [13]. From
the paper [13], we have the following definition for a hierarchy and the main idea
for hierarchical representations.

Definition [Hierarchy]. A hierarchy is an ordered list [S0, S1, . . .] of symbols, to-
gether with an associated list [D0, D1, . . .] of definitions of the symbols. For each
s ∈ Si with i ≥ 1, there is a definition d ∈ Di of the form s = f(σ1, σ2, . . . , σk)
where f is some well-understood function such as an elementary function and each
σj is a symbol in [S0, S1, . . . , Si−1] and is thus lower in the hierarchy than s.

A computation sequence c is recursively defined as an expression of the form
c = g(s1 , s2, . . . , sk) containing symbols sj from a known hierarchy, together with
the computation sequences defined by the associated definitions d1, d2, . . . , dk of
the symbols appearing in c. Obviously a computation sequence defined in terms
of symbols in S0, the set of atoms of the system, is just an expression.

Intuitively, a hierarchy is a framework for constructing computation sequen-
ces, and a computation sequence is an expression defined in terms of simpler
expressions. We used the package LargeExpressions to code our own LU symbolic
decomposition routine and also the forward and backward substitutions for solving
a linear system. The details will be given elsewhere [14]. After LU decomposition
with pivoting and zero-recognition, we get matrices L and U with the pivoting P
as follows:

L =

1 0 0

−l12(14m1+m2+m3)+J1
l1 l2M cos θ3

1 0

− cos θ1
l2M cos θ3

−4W3
W1

1

 , P =

 0 1 0

1 0 0

0 0 1

 , (15)

U =

 −l1 l2M cos θ3 l2
2
�
1
4m2 +m3

�
+ J2 −l2 cos θ2

0 −1
8
W1

1
2
W2

0 0 −2W4

 , (16)

where PA = LU . Now using forward and backward substitution in the usual way,
we get X coded with the LargeExpressions package.

After that, we get Explicit RIF-form in the computation sequence form:

θ̈1 = −W7, (17)

θ̈2 =
8

W1
[−l1 g

�
1

2
m1 +m2 +m3

�
cos θ1

−l1 l2 θ̇22 sin (θ1 + θ2)
�
1

2
m2 +m3

�
− 1
4
W5 +

1

4
W2W6], (18)

λ =
1

2
W6, (19)

Symbolic Computation Sequences and Numerical Analytic Geometry 341

and with the constraints

Φ = l1 sin θ1 − l2 sin θ2 = 0; (20)

DtΦ = l1 cos θ1θ̇1 − l2 cos θ2 θ̇2 = 0. (21)

The complete symbolic expressions for the W [i] are given in the appendix.
The equations (17), (18), (19), (20), (21) are also the explicit RIF form for the

2d slider crank. The symbolic preprocessing helps find all the hidden constraints in
the general DAE system (1), (2). This preprocessing procedure makes it possible
for us to integrate only interesting variables without computing all the independent
variables. For example, to this two dimensional slider crank, as already mentioned,
now we can symbolically separate (19) containing λ(t) from the other (17), (18),
(20), (21) and we can solve directly for θ1(t) and θ2(t).

5. Numerical Integration Using Computation Sequences

We now show how the two second-order (17), (18) for θ1 and θ2 can be inte-
grated. In general it is not possible to unveil all the expressions in the array
W . To do so would be to introduce the memory problems that were avoided by
using the Veil command. Instead we set up computation sequences to pass to
dsolve. We use Maple for the calculations. In particular we only use the Maple
LargeExpressions command Unveil to a minimal depth 1, to express the com-
putation sequence of substitution rules SW :

> SW := [seq(W[i] = Unveil[W](W[i],1), i = 1 .. LastUsed[W])];

Then in order to use dsolve/numeric, we make the variable substitutions as
follows:

> YW := [subs(θ1(t) = Y [1], θ2(t) = Y [3], θ̇1(t) = Y [2], θ̇2(t) = Y [4], SW)];

Now we use the codegen package in Maple to make a procedure for the
numeric integration.

> f := codegen[makeproc](YW, YP[1] = Y[2], YP[2] = rhs(odesys[1]),

YP[3] = Y[4],YP[4] = rhs(odesys[2]], parameters = [N, t, Y, YP]);

In order to complete the demonstration, we integrate the system for sample
numerical values. For the parameters, we choose the following values:

l1 := 1; l2 := 2;m1 := 1;m2 := 1;m3 := 2; g := 9.8; J1 := 4.5; J2 := 5.5;

For the initial conditions, we choose the following

θ1(0) = 0, θ̇1(0) = 1, θ2(0) = 0, θ̇2(0) =
1

2

which are consistent with the constraint equations

Φ = l1 sin θ1 − l2 sin θ2 = 0; (22)

DtΦ = l1 cos θ1θ̇1 − l2 cos θ2 θ̇2 = 0. (23)

The Maple numeric dsolve routine can solve the system as follows.

342 W. Zhou, D.J. Jeffrey and G.J. Reid

> ics := array([0,1,0,1/2]);

> dvars := [θ1(t), θ̇1(t), θ2(t), θ̇2(t)];
> dsol := dsolve(numeric, number=4, procedure =f, start =0,

initial = ics, procvars = dvars);

Since the system is being integrated as an ordinary ODE system rather than
a DAE one, we gain in speed but expect to lose accuracy. If we pick up some points
for testing the numeric ODE solutions with respect to the algebraic constraints,
we see a slow loss of precision. For example, when t = 1, we have the solutions
dsol as [t = 1., θ1(t) = .2629, θ̇1(t) = −.4375, θ2(t) = .1303, θ̇2(t) = −.2130], and
errors in the constraints (22, 23) are 0.14e− 7 and −0.69e− 7 respectively. When
t = 20, the errors are 0.42e− 5 and 0.59e− 6 respectively.

theta1

0

-1.5

-0.5

-2

155 25

-1

302010

-3.5

-3

-2.5

t

0

Figure 2. The angular θ1 oscillating movement.

Plots of the numerical simulation of the two dimensional slider crank are
shown below as Fig. 2 and Fig. 3. It tells us that the 2d slider crank is moving
oscillation with the given initial conditions θ̇1(0) = 1 and θ̇2(0) = 1/2. If we

increase the initial speeds of θ1 and θ2, for example let θ̇1(0) = 2 and θ̇2(0) = 1
which are consistent initial conditions, we get Fig. 4 and Fig. 5 which show us the
monotonic mode of the angle θ1.

6. Application of Numerical Algebraic and Analytic Geometry

In this section we discuss the use of some new techniques that are being applied to
DAE such as those studied here. A significant problem in large systems, such as the
target systems for this work, is the finding of consistent initial conditions. Again
there is a need for combined symbolic-numeric methods. The first area that can be
harnessed to DAE is that of Numerical Algebraic Geometry [5]. In that approach,
components of a polynomial system are characterized by “witness” points, which

Symbolic Computation Sequences and Numerical Analytic Geometry 343

theta2

0

-0.1

30

t

155

-0.2

-0.5

0.1

-0.3

200 25

-0.4

10

Figure 3. The angular θ2 oscillating movement.

t

302510
0

30

0 20

theta1

10

15

20

40

5

Figure 4. Monotonic mode for θ1.

result from intersecting the component with random linear spaces of complemen-
tary dimension. For polynomial DAE, this gives a method of determining points
on the constraints, for the consistent initialization of numerical integrators. Also
the hybrid symbolic-numeric completion process described in [6] can be applied to
polynomial DAE, using numerical algebraic geometry.

Another interesting possibility for analytic DAE is to extend the methods of
Numerical Algebraic Geometry [5] as applied to polynomial PDE [6] to the case
of analytic DAE. This requires using the substitution of approximate points on
the components of the leading nonlinear systems to test ideal membership in the
application of rif. It is natural to generalize the techniques of algebraic geometry

344 W. Zhou, D.J. Jeffrey and G.J. Reid

t

302515

theta2

0.4

5

-0.4

20
0

0

-0.2

10

0.2

Figure 5. The angular motion θ2 corresponding to monotonic
mode of θ1.

to the analytic case and to characterize irreducible components of analytic func-
tions by points cut out by the intersection of the components with random linear
spaces of complementary dimension. The systems are regularized by embedding in
appropriate square systems, as in the polynomial case. Newton methods converge
to the points on the components, locally. See [11, §5.2.3] for material on the range
of non-constant entire functions. Global results like those in the polynomial case,
using homotopy continuation, are much harder to obtain. Usually computations
must be executed locally on some compact set.

For example, consider the determination of points on the components of
an analytic function f(z, w) = 0 on some compact set U ⊂ C2. By intersecting
the component with a random line αz + βw + γ = 0, we obtain a univariate
problem whose solutions can be found on C. Powerful tools are already available to
automate this process, for example the Maple command Rootfinding[Analytic].
This uses the Cauchy Integral Formula to determine the number of zeros in a given
sub-domain of C. This subdomain is then divided to isolate the roots. We note
that α-theoretic methods can lead to guaranteed convergence, in the isolated zero
case, provided certain local criteria are met [9, 8]. A forthcoming work will be
devoted to such Numerical Analytic Geometry techniques.

7. Conclusion

This paper uses a simple multibody dynamic system to show how we can com-
bine symbolic methods and numeric methods for simulating mechanical systems
described by higher-index DAE systems. An advantage of this combination is not

Symbolic Computation Sequences and Numerical Analytic Geometry 345

only that it helps the numeric method to find consistent initial conditions, but it
also extend the potential for symbolic methods, such as RifSimp, to solve more
complex symbolic multibody dynamic systems. Using computation sequences to
invert a symbolic matrix allows the calculation to be completed in less memory
and less time, more details being given in a upcoming paper [14].

We also discussed applying new methods from Numerical Algebraic Geometry
and Numerical Analytic Geometry to DAE. Already in her analysis of analytic
DAE, Ilie used computation sequences to establish polynomial cost methods. The
method upon which she based her complexity analysis is Pryce’s structural analysis
of DAE [16, 17, 18]. Specifically Pryce’s method can be regarded as an efficient way
to obtain implicit RifSimp forms, in certain cases. Numerical analytic geometry
naturally partners such methods.

Acknowledgements. We thank Silvana Ilie for discussions.

References

[1] P. Shi, J. McPhee. Symbolic Programming of a Graph-Theoretic Approach to Flexible
Multibody Dynamics. Mechanics of Structures and Machines, 30(1), 123–154 (2002).

[2] P. Shi, J. McPhee. Dynamics of Flexible Multibody Systems Using Virtual Work and
Linear Graph Theory. Multibody System Dynamics, 4(4), 355–381 (2000).

[3] W. Schiehlen. Multibody Systems Handbook. Springer-Verlag, Berlin, 1990.

[4] H. Stetter. Numerical Polynomial Algebra. SIAM, 2005.

[5] A.J. Sommese, C.W. Wampler. The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific Press, Singapore, 2005.

[6] G. Reid, J. Verschelde, A.D. Wittkopf, W. Wu. Symbolic-Numeric Completion of
Differential Systems by Homotopy Continuation. Proc. ISSAC 2005, 269–276. ACM
Press, 2005.

[7] G. Reid, A. Wittkopf, A. Boulton. Reduction of Systems of Nonlinear Partial Dif-
ferential Equations to Simplified Involutive Forms. Eur. J. Appl. Math., 7, 604–635
(1996).

[8] M. Giusti, G. Lecerf, B. Salvy, J.-C. Yakoubsohn. On Location and Approximation
of Clusters of Zeros: Case of Embedding Dimension One. To appear in Foundations
of Computational Mathematics, 2006.

[9] M. Giusti, G. Lecerf, B. Salvy, J.-C. Yakoubsohn. Location and Approximation of
Clusters of Zeros of Analytic Functions. Foundations of Computational Mathematics,
5, 257–311 (2005).

[10] W. Zhou, D.J. Jeffrey, G.J. Reid, C. Schmitke, J. McPhee. Implicit Reduced Involu-
tive Forms and Their Application to Engineering Multibody Systems. Proc. IWMM
2004, LNCS 3519, 31–43. Springer-Verlag, Berlin, 2005.

[11] T. Nishino. Function Theory in Several Complex Variables. Translations of Mathe-
matical Monographs 193, AMS, 2001.

[12] R.M. Corless. Essential Maple 7. Springer-Verlag, Berlin, 2002.

346 W. Zhou, D.J. Jeffrey and G.J. Reid

[13] R.M. Corless, D.J. Jeffrey, M.B. Monagan, Pratibha. Two Perturbation Calculation
in Fluid Mechanics Using Large-Expression Management. J. Symbolic Computation,
11, 1–17 (1996).

[14] W. Zhou, D.J. Jeffrey. LU Symbolic Decomposition with Large Expression Manage-
ment Strategies. In preparation.

[15] M.B. Monagan. Gauss: a Parameterized Domain of Computation System with Sup-
port for Signature Functions. Proc. DISCO ’93, LNCS 722, 81–94. Springer-Verlag,
Berlin, 1993.

[16] S. Ilie, R.M. Corless, G. Reid. Numerical Solutions of Index-1 Differential Algebraic
Equations Can Be Computed in Polynomial Time. Numerical Algorithms, 41, 161–
171 (2006).

[17] S. Ilie. Computational Complexity of Numerical Solutions of Initial Value Problems
for Differential Algebriac Equations. PhD thesis, University of Western Ontario,
2005.

[18] R.M. Corless, S. Ilie. Polynomial Cost for Solving IVP for High-Index DAE. Sub-
mitted.

[19] J.D. Pryce. A Simple Structural Analysis Method for DAEs. BIT 41(2), 364–394
(2001).

[20] J.D. Pryce. Solving High-index DAEs by Taylor Series. Numer. Algorithms, 19, 195–
211 (1998).

Appendix

We append the source listing of the right-hand side of the differential equation, to
show the result of Maple’s automatic code generation.

f := proc(N, t, Y, Y P)
W [1] := (−4l21l22 cos(Y [1] + Y [3])2m22 − 16l21l22 cos(Y [1] + Y [3])2m2m3 − 16l21l22
cos(Y [1] + Y [3])2m23 + l

2
1m1l

2
2m2 + 4l

2
1m1l

2
2m3 + 4l

2
1m1J2 + 4l

2
1m
2
2l
2
2 + 20l

2
1m2

l22m3 + 16l
2
1m2J2 + 16l

2
1m
2
3l
2
2 + 16l

2
1m3J2 + 4J1l

2
2m2 + 16J1l

2
2m3 + 16J1J2)/(l1

l2 cos(Y [1] + Y [3])(m2 + 2m3));
W [2] := (−2l21 cos(Y [1]) cos(Y [1] + Y [3])m2 − 4l21 cos(Y [1]) cos(Y [1] + Y [3])m3
+cos(Y [3])l21m1 + 4 cos(Y [3])l

2
1m2 + 4 cos(Y [3])l

2
1m3 + 4 cos(Y [3])J1)/(l1

cos(Y [1] + Y [3])(m2 + 2m3));
W [3] := (−2l22 cos(Y [3]) cos(Y [1] + Y [3])m2 − 4l22 cos(Y [3]) cos(Y [1] + Y [3])m3
+cos(Y [1])l22m2 + 4 cos(Y [1])l

2
2m3 + 4 cos(Y [1])J2)/(l2 cos(Y [1] + Y [3])(m2

+2m3));

W [4] :=(− cos(Y [1]) cos(Y [3])W [1]+W [3]W [2] cos(Y [1]+Y [3])m2+2W [3]W [2]
cos(Y [1] + Y [3])m3)/(cos(Y [1] + Y [3])(m2 + 2m3)W [1]);
W [5] := (−g cos(Y [3]) + l1Y [2]2 sin(Y [1] + Y [3]))(l21m1 + 4l21m2 + 4l21m3 + 4J1)
/(cos(Y [1] + Y [3])l1);

Symbolic Computation Sequences and Numerical Analytic Geometry 347

W [6] :=(−l1 sin(Y [1])Y [2]2 cos(Y [1]+Y [3])W [1]+l2 sin(Y [3])Y [4]2 cos(Y [1]
+Y [3])W [1]−cos(Y [1])W [1]g cos(Y [3])+cos(Y [1])W [1]l1Y [2]2 sin(Y [1]+Y [3])
−2W [3] cos(Y [1]+Y [3])l1g cos(Y [1])m1−4W [3] cos(Y [1]+Y [3])l1g cos(Y [1])m2
−4W [3] cos(Y [1]+Y [3])l1g cos(Y [1])m3−2W [3] cos(Y [1]+Y [3])l1l2Y [4]2 sin(Y [1]
+Y [3])m2−4W [3] cos(Y [1]+Y [3])l1l2Y [4]2 sin(Y [1]+Y [3])m3−W [3] cos(Y [1]
+Y [3])W [5])/(W [4]W [1] cos(Y [1] + Y [3]));

W [7] :=(−l2g cos(Y [3])W [1]m2−2l2g cos(Y [3])W [1]m3+l1l2Y [2]2 sin(Y [1]
+Y [3])W [1]m2+2l1l2Y [2]

2 sin(Y [1]+Y [3])W [1]m3−2l22m2l1g cos(Y [1])m1−4l22
m22l1g cos(Y [1])−20l22m2l1g cos(Y [1])m3−2l32m22l1Y [4]2 sin(Y [1]+Y [3])−12l32
m2l1Y [4]

2 sin(Y [1]+Y [3])m3−l22m2W [5]−l22m2W [2]W [6]−8l22m3l1g cos(Y [1])
m1−16l22m23l1g cos(Y [1])−16l32m23l1Y [4]2 sin(Y [1]+Y [3])−4l22m3W [5]−4l22m3
W [2]W [6]− 8J2l1g cos(Y [1])m1 − 16J2l1g cos(Y [1])m2 − 16J2l1g cos(Y [1])m3
−8J2l1l2Y [4]2 sin(Y [1]+Y [3])m2−16J2l1l2Y [4]2 sin(Y [1]+Y [3])m3−4J2W [5]
−4J2W [2]W [6]+l2 cos(Y [3])W [6]W [1])/(W [1]l1l2 cos(Y [1]+Y [3])(m2+2m3));

Y P [1] :=Y [2]; Y P [2] :=W [7];YP [3] :=Y [4]; Y P [4] :=8(−l1g(1/2m1+m2+m3)
cos(Y [1])−l1l2Y [4]2 sin(Y [1]+Y [3])(1/2m2+m3)− 1/4W [5]
−1/4W [2]W [6])/W [1];

endproc

Wenqin Zhou, David J. Jeffrey and Greg J. Reid
Department of Applied Mathematics
The University of Western Ontario
London, Ontario, Canada !!! Please tell us your

complete address, the
streetname is missing

e-mail: wzhou7@uwo.ca
djeffrey@uwo.ca

reid@uwo.ca

