Contents

38	Spectra	1
39	Strict model structure	7
40	Stable equivalences	11

38 Spectra

The approach to stable homotopy that follows was introduced in a seminal paper of Bousfield and Friedlander [2], which appeared in 1978.

A spectrum X consists of pointed (level) simplicial sets X^n , $n \ge 0$, together with **bonding maps**

$$\sigma: S^1 \wedge X^n \to X^{n+1}.$$

A map of spectra $f : X \to Y$ consists of pointed maps $f : X^n \to Y^n$ which respect structure, in that the diagrams

$$\begin{array}{c|c}
S^{1} \wedge X^{n} \xrightarrow{\sigma} X^{n+1} \\
S^{1} \wedge f & \downarrow f \\
S^{1} \wedge Y^{n} \xrightarrow{\sigma} Y^{n+1}
\end{array}$$

commute.

The category of spectra is denoted by **Spt**. This category is complete and cocomplete.

Examples:

1) Suppose *Y* is a pointed simplicial set. The **suspension spectrum** $\Sigma^{\infty}Y$ consists of the pointed simplicial sets

$$Y, S^1 \wedge Y, S^1 \wedge S^1 \wedge Y, \ldots, S^n \wedge Y, \ldots$$

where

$$S^n = S^1 \wedge \dots \wedge S^1$$

(*n*-fold smash power).

The bonding maps of $\Sigma^{\infty}Y$ are the canonical isomorphisms

$$S^1 \wedge S^n \wedge Y \cong S^{n+1} \wedge Y.$$

There is a natural bijection

$$\hom(\Sigma^{\infty}Y, X) \cong \hom(X, Y^0).$$

The suspension spectrum functor is left adjoint to the "level 0" functor $X \mapsto X^0$.

2) $S = \Sigma^{\infty} S^0$ is the sphere spectrum.

3) Suppose X is a spectrum and K is a pointed simplicial set.

The spectrum $X \wedge K$ has level spaces

$$(X \wedge K)^n = X^n \wedge K,$$

and bonding maps

$$\sigma \wedge K: S^1 \wedge X^n \wedge K \to X^{n+1} \wedge K.$$

There is a natural isomorphism

$$\Sigma^{\infty}K\cong S\wedge K.$$

3) $X \wedge S^1$ is the **suspension** of a spectrum *X*.

The **fake suspension** ΣX of *X* has level spaces $S^1 \wedge X^n$ and bonding maps

$$S^1 \wedge \sigma: S^1 \wedge S^1 \wedge X^n \to S^1 \wedge X^{n+1}$$

Remark: There is a commutative diagram

where τ flips adjacent smash factors:

$$\tau(x \wedge y) = y \wedge x.$$

The dotted arrow (bonding map induced by $\sigma \wedge S^1$) differs from $S^1 \wedge \sigma$ by precomposition by $\tau \wedge X^n$.

The flip $\tau: S^1 \wedge S^1 \to S^1 \wedge S^1$ is non-trivial: it is multiplication by -1 in $H_2(S^2)$.

Recall some definitions and results from Section 15:

Suppose *X* is a simplicial set.

Write $\tilde{\mathbb{Z}}(X)$ for the kernel of the map $\mathbb{Z}(X) \to \mathbb{Z}(*)$.

Then $H_n(X,\mathbb{Z}) = \pi_n(\mathbb{Z}(X),0)$ (see Theorem 15.4), and $\tilde{H}_n(X,\mathbb{Z}) = \pi_n(\tilde{\mathbb{Z}}(X),0)$ (reduced homology).

If X is pointed there is a natural isomorphism

 $\tilde{\mathbb{Z}}(X) \cong \mathbb{Z}(X) / \mathbb{Z}(*),$

and there is a natural pointed map

$$h: X \xrightarrow{\eta} \mathbb{Z}(X) \to \tilde{\mathbb{Z}}(X)$$

(the Hurewicz map).

If *A* is a simplicial abelian group, there is a natural simplicial map

$$\gamma: S^1 \wedge A \to \widetilde{\mathbb{Z}}(S^1) \otimes A =: S^1 \otimes A,$$

defined by $x \wedge a \mapsto x \otimes a$.

4) The **Eilenberg-Mac Lane spectrum** H(A) associated to a simplicial abelian group *A* consists of the spaces

$$A, S^1 \otimes A, S^2 \otimes A, \ldots$$

with bonding maps

$$S^1 \wedge (S^n \otimes A) \xrightarrow{\gamma} S^1 \otimes (S^n \otimes A) \cong S^{n+1} \otimes A.$$

5) Suppose X is a spectrum and K is a pointed simplicial set.

The spectrum $hom_*(K, X)$ has

$$\mathbf{hom}_*(K,X)^n = \mathbf{hom}_*(K,X^n),$$

with bonding map

$$S^1 \wedge \mathbf{hom}_*(K, X^n) \to \mathbf{hom}_*(K, X^{n+1})$$

adjoint to the composite

$$S^1 \wedge \mathbf{hom}_*(K, X^n) \wedge K \xrightarrow{S^1 \wedge ev} S^1 \wedge X^n \xrightarrow{\sigma} X^{n+1}.$$

There is a natural bijection

$$hom(X \wedge K, Y) \cong hom(X, hom_*(K, Y)).$$

Suppose *X* is a spectrum and $n \in \mathbb{Z}$.

The **shifted spectrum** X[n] has

$$X[n]^m = \begin{cases} * & m+n < 0\\ X^{m+n} & m+n \ge 0 \end{cases}$$

Examples: $X[-1]^0 = *$ and $X[-1]^n = X^{n-1}$ for $n \ge 1$.

 $X[1]^n = X^{n+1} \text{ for all } n \ge 0.$

Remarks: 1) The bonding maps define a natural map

$$\Sigma X \to X[1].$$

We'll see later that this map is a stable equivalence, and that there is a stable equivalence $\Sigma X \simeq X \wedge S^1$.

2) There is a natural bijection

 $hom(X[n],Y) \cong hom(X,Y[-n])$

and a stable equivalence $X[n][-n] \rightarrow X$, so that all shift operators are invertible in the stable category.

3) There is a natural bijection

 $\hom(\Sigma^{\infty}K[-n],Y)\cong\hom(K,Y^n)$

for $n \ge 0$, so that the n^{th} level functor $Y \to Y^n$ has a left adjoint.

4) The n^{th} layer $L_n X$ of a spectrum X consists of the spaces

 $X^0, \ldots, X^n, S^1 \wedge X^n, S^2 \wedge X^n, \ldots$

There are obvious maps $L_n X \rightarrow L_{n+1} X \rightarrow X$ and a natural isomorphism

$$\varinjlim_n L_n X \cong X.$$

The functor $X \mapsto L_n X$ is left adjoint to truncation up to level *n*.

The system of maps

$$\Sigma^{\infty}X^0 = L_0X \to L_1X \to \dots$$

is called the **layer filtration** of *X*.

Here's an exercise: show that there are natural pushout diagrams

39 Strict model structure

A map $f: X \to Y$ is a strict (levelwise) weak equivalence (resp. strict (levelwise) fibration) if all maps $f: X^n \to Y^n$ are weak equivalences (resp. fibrations) of pointed simplicial sets.

A cofibration is a map $i : A \rightarrow B$ such that

- 1) $i: A^0 \rightarrow B^0$ is a cofibration of (pointed) simplicial sets, and
- 2) all maps

$$(S^1 \wedge B^n) \cup_{(S^1 \wedge A^n)} A^{n+1} \to B^{n+1}$$

are cofibrations.

Exercise: Show that all cofibrations are levelwise cofibrations.

Given spectra X, Y, the function complex **hom**(X, Y) is a simplicial set with

 $\mathbf{hom}(X,Y)_n = \mathbf{hom}(X \wedge \Delta^n_+, Y).$

Recall that $\Delta_{+}^{n} = \Delta^{n} \sqcup \{*\}$ is the simplex with a disjoint base point attached.

Proposition 39.1. With these definitions, the category **Spt** of spectra satisfies the axioms for a proper closed simplicial model category.

This model structure is also cofibrantly generated.

Proof. Suppose given a lifting problem

$$\begin{array}{ccc}
A & \stackrel{\alpha}{\longrightarrow} X \\
\downarrow i & & \downarrow^{p} \\
B & \stackrel{\beta}{\longrightarrow} Y
\end{array}$$

where i is a cofibration and p is a strict fibration and strict weak equivalence.

The lifting θ^0 exists in the diagram

$$\begin{array}{ccc}
A^{0} & \xrightarrow{\alpha} & X^{0} \\
\downarrow^{i} & \theta^{0} & \swarrow^{j} & \downarrow^{p} \\
B^{0} & \xrightarrow{\beta} & Y^{0}
\end{array}$$

and then θ^1 exists in the diagram

Proceed inductively to show that the lifting problem can be solved.

The lifting problem is solved in a similar way if i is a trivial cofibration and p is a strict fibration. We have proved the lifting axiom **CM4**.

Suppose that $f: X \to Y$ is a map of spectra, and find a factorization

in level 0, where i^0 is a cofibration and p^0 is a fibration.

Form the diagram

and find a factorization

where *j* is a cofibration and p^1 is a trivial fibration. Write $i^1 = j \cdot i_*$.

We have factorized f as a cofibration followed by a trivial fibration up to level 1. Proceed inductively to show that $f = p \cdot i$ where p is a trivial strict fibration and i is a cofibration.

The other factorization statement has the same proof, giving **CM5**.

The simplicial model structure is inherited from pointed simplicial sets, as is properness (exercise).

The generating sets for the cofibrations and trivial cofibrations, respectively are the maps

$$\Sigma^{\infty}(\Lambda^n_k)_+[-m] \to \Sigma^{\infty}\Delta^n_+[-m]$$

and

$$\Sigma^{\infty}(\partial \Delta^n)_+[-m] \to \Sigma^{\infty}\Delta^n_+[-m]$$

respectively.

40 Stable equivalences

Suppose X is a pointed simplicial set, and recall that the loop space ΩX is defined by

 $\Omega X = \mathbf{hom}_*(S^1, X).$

The construction only makes homotopy theoretic sense (ie. preserves weak equivalences) if X is fibrant — in that case there are isomorphisms

$$\pi_{i+1}(X,*)\cong\pi_i(\Omega X,*),\ i\geq 0,$$

of simplicial homotopy groups (* is the base point for X), by a standard long exact sequence argument (see Section 31).

If X is not fibrant, then ΩX is most properly a derived functor:

 $\Omega X := \Omega X_f$

where $j: X \to X_f$ is a fibrant model for X in the sense that *j* is a weak equivalence and X_f is fibrant.

This construction can be made functorial, since **sSet**_{*} has functorial fibrant replacements.

There is a natural bijection

$$\operatorname{hom}(Z \wedge S^1, X) \cong \operatorname{hom}(Z, \Omega X).$$

so that every morphism $f: Z \wedge S^1 \to X$ has a uniquely determined adjoint $f_*: Z \to \Omega X$.

We can say that a spectrum *X* consists of pointed simplicial sets X^n , $n \ge 0$, and **adjoint bonding maps** $\sigma_* : X^n \to \Omega X^{n+1}$

Here are two constructions::

1) There is a natural (levelwise) fibrant model j: $Y \rightarrow FY$ in the strict model structure for **Spt**.

2) Suppose X is a spectrum. Set

$$\Omega^{\infty} X^n = \varinjlim (X^n \xrightarrow{\sigma_*} \Omega X^{n+1} \xrightarrow{\Omega \sigma_*} \Omega^2 X^{n+2} \to \dots).$$

The comparison diagram

determines a spectrum structure $\Omega^{\infty}X$ and a natural map $\omega: X \to \Omega^{\infty}X$.

The adjoint bonding map

$$\Omega^{\infty} X^n \xrightarrow{\sigma_*} \Omega(\Omega^{\infty} X^{n+1})$$

is an isomorphism (exercise).

Write $QY = \Omega^{\infty}FY$ and let $\eta : Y \to QY$ be the composite

$$Y \xrightarrow{j} FY \xrightarrow{\omega} \Omega^{\infty} FY = QY.$$

The spectrum QY is the **stabilization** of Y.

Say that a map $f : X \to Y$ is a **stable equivalence** if the map $f_* : QX \to QY$ is a strict equivalence.

Remarks:

1) All spaces QY^n are fibrant (NB: this is a special property of "ordinary" spectra), and the map σ_* : $QY^n \rightarrow \Omega QY^{n+1}$ is an isomorphism.

2) All QY^n are *H*-spaces with groups $\pi_0 QY^n$ of path components. All induced maps $f_* : QX^n \to QY^n$ are *H*-maps.

It follows that the maps $f_* : QX^n \to QY^n$ are weak equivalences (or that f is a stable equivalence) if and only if all maps

 $\pi_i(QX^n,*) \to \pi_i(QY^n,*)$

based at the distinguished base point are isomorphisms.

Define the stable homotopy groups $\pi_k^s Y$, $k \in \mathbb{Z}$ by

$$\pi_k^{s}Y = \lim_{\substack{n+k \geq 0}} (\dots \to \pi_{n+k}FY^n \to \pi_{n+k+1}FY^{n+1} \to \dots),$$

where the maps of homotopy groups are induced by the maps $\sigma_* : FY^n \to \Omega FY^{n+1}$.

There are isomorphisms

$$\pi_k(QY^n,*)\cong\pi_{k-n}^sY,$$

so $f: X \to Y$ is a stable equivalence if and only if f induces an isomorphism in all stable homotopy groups.

The strict model structure on the category of spectra **Spt** and the stablization functor Q fits into a general framework.

Suppose **M** is a right proper closed model category with a functor $Q : \mathbf{M} \to \mathbf{M}$, and suppose there is a natural map $\eta_X : X \to QX$.

Say that a map $f: X \to Y$ of **M** is a *Q*-equivalence if the induced map $Qf: QX \to QY$ is a weak equivalence of **M**.

Q-cofibrations are cofibrations of M.

A *Q*-fibration is a map which has the RLP wrt all maps which are cofibrations and *Q*-equivalences.

Here are some conditions:

- A4 The functor *Q* preserves weak equivalences of M.
- **A5** The maps $\eta_{QX}, Q(\eta_X) : QX \to QQX$ are weak equivalences of **M**.
- A6' Q-equivalences are stable under pullback along Q-fibrations.

Theorem 40.1 (Bousfield-Friedlander). Suppose given a right proper closed model category **M** with a functor $Q : \mathbf{M} \to \mathbf{M}$ and natural map $\eta : X \to QX$ as above. Suppose the Q-equivalences, cofibrations and Q-fibrations satisfy the axioms **A4**, **A5** and **A6**'.

Then **M**, together with these three classes of maps, has the structure of a right proper closed model category.

Proposition 40.2. The category **Spt** of spectra and the stabilization functor *Q* satisfy the axioms **A4**, **A5** and **A6**'.

For the proof of Proposition 40.2, the condition **A4** is a consequence of the following:

Lemma 40.3. Suppose *I* is a filtered category, and suppose given a natural transformation $f : X \rightarrow Y$

of functors $X, Y : I \to \mathbf{sSet}$ such that each component map $f_i : X_i \to Y_i$ is a weak equivalence.

Then the map $f_* : \varinjlim_i X_i \to \varinjlim_i Y_i$ is a weak equivalence.

Proof. Exercise.

To verify condition A5, consider the diagram

The indicated maps are strict weak equivalences, so it suffices to show that $\Omega^{\infty}F\omega$ and

 $\omega: F\Omega^{\infty}FX \to \Omega^{\infty}F\Omega^{\infty}FX$

are strict weak equivalences.

Here's another picture:

It's an exercise to show that $\Omega^{\infty}\omega$ is an isomorphism: actually

$$\boldsymbol{\omega} = \boldsymbol{\Omega}^{\infty}\boldsymbol{\omega}: \boldsymbol{\Omega}^{\infty}FX \to \boldsymbol{\Omega}^{\infty}\boldsymbol{\Omega}^{\infty}FX.$$

But then the required maps are strict equivalences.

To verify A6', use the fact that every strict fibre sequence $F \rightarrow X \rightarrow Y$ induces a long exact sequence

$$\cdots \to \pi_k^s F \to \pi_k^s X \to \pi_k^s Y \xrightarrow{\partial} \pi_{k-1}^s F \to \cdots$$

(exercise). "Right properness" follows from an exact sequence comparison.

This completes the proof of Proposition 40.2

The model structure on **Spt** arising from the Bousfield-Friedlander Theorem via Proposition 40.2 and Theorem 40.1 is called the **stable model structure** for the category of spectra.

The homotopy category Ho(Spt) is the stable category.

This is traditional usage, but also a misnomer, because there are many stable categories. The proof of Theorem 40.1 is accomplished with a series of lemmas.

Recall that **M** is a right proper closed model category with functor $Q : \mathbf{M} \to \mathbf{M}$ and natural transformation $\eta : X \to QX$ such that the following conditions hold:

- A4 The functor Q preserves weak equivalences of M.
- **A5** The maps $\eta_{QX}, Q(\eta_X) : QX \to QQX$ are weak equivalences of **M**.
- A6' Q-equivalences are stable under pullback along Q-fibrations.

Lemma 40.4. A map $p: X \to Y$ is a Q-fibration and a Q-equivalence if and only if it is a trivial fibration of **M**.

Proof. Every trivial fibration p has the RLP wrt all cofibrations, and is therefore a Q-fibration. p is also a Q-equivalence, by A4.

Suppose that $p: X \to Y$ is a *Q*-fibration and a *Q*-equivalence.

There is a factorization

where *j* is a cofibration and π is a trivial fibration of **M**.

 π is a *Q*-equivalence by A4, so *j* is a *Q*-equivalence.

There is a diagram

since j is a cofibration and a Q-equivalence and p is a Q-fibration.

Then p is a retract of π and is therefore a trivial fibration of **M**.

Lemma 40.5. Suppose $p: X \to Y$ is a fibration of **M** and the maps $\eta: X \to QX$, $\eta: Y \to QY$ are weak equivalences of **M**.

Then p is a Q-fibration.

Proof. Consider the lifting problem

There is a diagram

where j_{α}, j_{β} are trivial cofibrations of **M** and p_{α}, p_{β} are fibrations.

There is an induced diagram

and the lifting problem is solved if we can show that π_* is a weak equivalence.

But there is finally a diagram

The maps Qi, j_{α} and j_{β} are weak equivalences of **M** so that π is a weak equivalence.

The maps pr are weak equivalences by right properness of **M** and the assumptions on p.

It follows that π_* is a weak equivalence of **M**.

Lemma 40.6. Every map $f : QX \to QY$ has a factorization $f = q \cdot j$, where j is a cofibration and Q-equivalence and q is a Q-fibration.

Proof. f has a factorization $f = q \cdot j$ where *j* is a trivial cofibration and *q* is a fibration of **M**.

j is a *Q*-equivalence by A4, and *q* is a *Q*-fibration by Lemma 40.5.

In effect, there is a diagram

$$QX \xrightarrow{j} Z \xrightarrow{p} QY$$
$$\eta \downarrow \simeq \eta \downarrow \simeq \downarrow \eta$$
$$QQX \xrightarrow{\simeq} QZ \xrightarrow{Qp} QQY$$

so $\eta: Z \to QZ$ is a weak equivalence of **M**.

Lemma 40.7. Every map $f : X \to Y$ has a factorization $f = q \cdot j$, where j is a cofibration and Qequivalence and q is a Q-fibration. *Proof.* The map $f_* : QX \to QY$ has a factorization

where p is a Q-fibration and i is a cofibration and a Q-equivalence, by Lemma 40.6.

Form the diagram

The maps η are *Q*-equivalence by A5, so η_* is a *Q*-equivalence by A6'. It follows that i_* is a *Q*-equivalence.

The map i_* has a factorization

$$X \xrightarrow{i_*} Z \times_{QY} Y$$

where *j* is a cofibration and π is a trivial strict fibration.

Then π is a *Q*-equivalence and a *Q*-fibration by Lemma 40.4, so *j* is a *Q*-equivalence, and the composite $p_* \cdot \pi$ is a *Q*-fibration. *Proof of Theorem 40.1.* The non-trivial closed model statements are the lifting axiom **CM4** and the factorization axiom **CM5**.

CM5 is a consequence of Lemma 40.4 and Lemma 40.7. **CM4** follows from Lemma 40.4.

The right properness of the model structure is the statement A6'.

Say that the model structure on **M** given by Theorem 40.1 is the *Q*-structure.

Lemma 40.8. Suppose that, in addition to the assumptions of Theorem 40.1, that the model structure **M** is left proper.

Then the Q-structure on M is left proper.

Proof. Suppose given a pushout diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & C \\
\downarrow & & \downarrow \\
B & \xrightarrow{f_*} & B \cup_A C
\end{array}$$

where f is a Q-equivalence and i is a cofibration. We must show that f_* is a Q-equivalence (see Definition 17.4). Find a factorization

where *j* is a cofibration and π is a trivial fibration of **M**.

The map $\pi_* : B \cup_A D \to B \cup_A C$ is a weak equivalence of **M** by left properness for **M**, so π_* is a *Q*-equivalence by **A4**.

j is a *Q*-equivalence as well as a cofibration, so that $j_*: B \to B \cup_A D$ is a cofibration and a *Q*-equivalence.

Then the composite $f_* = \pi_* \cdot j_*$ is a *Q*-equivalence.

Here's the other major abstract result in this game, again from [2]:

Theorem 40.9. Suppose the model category **M** and the functor *Q* satisfy the conditions for Theorem 40.1

Then a map $p: X \to Y$ of **M** is a stable fibration if and only if the following conditions hold:

1) *p* is a fibration of **M**, and

2) the diagram

$$\begin{array}{c} X \xrightarrow{\eta} QX \\ p \\ \downarrow & \downarrow Qp \\ Y \xrightarrow{\eta} QY \end{array}$$

is homotopy cartesian in M.

- **Corollary 40.10.** 1) An object X of **M** is Q-fibrant if and only if it is fibrant and the map $\eta : X \rightarrow$ QX is a weak equivalence of **M**.
- 2) A spectrum X is stably fibrant if and only if it is strictly fibrant and all adjoint bonding maps $\sigma_*: X^n \to \Omega X^{n+1}$ are weak equivalences of pointed simplicial sets.

Fibrant spectra are often called Ω -spectra.

Corollary 40.11. Suppose given a diagram

$$\begin{array}{c} X \xrightarrow{\simeq} X' \\ p \\ p \\ Y \xrightarrow{\simeq} Y' \end{array}$$

in which p, p' are fibrations and the horizontal maps are weak equivalences of **M**.

Then p is a Q-fibration if and only if p' is a Q-fibration.

Proof of Theorem 40.9. Suppose $p: X \to Y$ is a fibration of **M**, and that the diagram

is homotopy cartesian in M.

Then *Qp* has a factorization

where i is a trivial cofibration and q is a fibration. Then q is a Q-fibration by Lemma 40.5.

Factorize the weak equivalence $\theta : X \to Y \times_{QY} Z$ (the square is homotopy cartesian) as

where π is a trivial fibration of **M** and *i* is a trivial cofibration.

Then $q_* \cdot \pi$ is a *Q*-fibration (Lemma 40.4), and the

lifting exists in the diagram

Thus, p is a retract of a Q-fibration, and is therefore a Q-fibration.

Conversely, suppose that $p: X \to Y$ is a *Q*-fibration, and factorize $Qp = q \cdot i$ as above.

The map $\eta_*: Y \times_{QY} Z \to Z$ is a *Q*-equivalence by **A6**', so θ is a *Q*-equivalence.

The picture

is a weak equivalence of fibrant objects in the category \mathbf{M}/Y of objects fibred over *Y*, for the *Q*structure on \mathbf{M} .

The usual category of fibrant objects trick (see Section 13) implies that θ has a factorization

in **Spt**/*Y*, where π is a *Q*-fibration and a *Q*-equivalence, and *i* is a section of a map $V \rightarrow X$ which is a *Q*-fibration and a *Q*-equivalence.

Thus, π and *i* are weak equivalences of **M** by Lemma 40.4, so that θ is a weak equivalence of **M**.

Write

$$A\otimes K=A\wedge K_+,$$

for a spectrum A and a simplicial set K.

Lemma 40.12. Suppose $i : A \rightarrow B$ is a stably trivial cofibration of spectra.

Then all induced maps

 $(B\otimes\partial\Delta^n)\cup(A\otimes\Delta^n)\to B\otimes\Delta^n$

are stably trivial cofibrations.

Quillen's axiom **SM7** for the stable model structure on **Spt** follows easily: if $j: K \rightarrow L$ is a cofibration of simplicial sets and $i: A \rightarrow B$ is a cofibration of spectra, then the induced map

 $(B \otimes K) \cup (A \otimes L) \subset B \otimes L$

is a cofibration which is a stable equivalence if either i is a stable equivalence (Lemma 40.12) or jis a weak equivalence of simplicial sets (use the simplicial model axiom for the strict structure). Proof of Lemma 40.12. It suffices to show that

 $i \otimes \partial \Delta^n : A \otimes \partial \Delta^n \to B \otimes \partial \Delta^n$

is a stable equivalence.

There is a pushout diagram

$$egin{array}{ccc} A\otimes\partial\Delta^{n-1}{\longrightarrow}A\otimes\Lambda^n_k \ & \downarrow & \downarrow \ A\otimes\Delta^{n-1}{\longrightarrow}A\otimes\partial\Delta^n \end{array}$$

There is also a corresponding diagram for B and an obvious comparison.

The simplicial sets Λ_k^n and Δ^{n-1} are both weakly equivalent to a point, so it suffices to show that the comparison

$$i \otimes \partial \Delta^{n-1} : A \otimes \partial \Delta^{n-1} o B \otimes \partial \Delta^{n-1}$$

is a stable equivalence.

This is the inductive step in an argument that starts with the case

$$i \otimes \partial \Delta^1 : A \otimes \partial \Delta^1 \to B \otimes \partial \Delta^1$$

and this map is isomorphic to the map

$$i \wedge i : A \wedge A \to B \wedge B$$
.

Finally, a wedge (coproduct) of stably trivial cofibrations is stably trivial. \Box

Note: Bousfield gives a different proof of the Lemma 40.12 in [1]. The result is also mentioned in Remark X.4.7 (on p.496) of [3], without proof.

References

- [1] A. K. Bousfield. On the telescopic homotopy theory of spaces. *Trans. Amer. Math. Soc.*, 353(6):2391–2426 (electronic), 2001.
- [2] A. K. Bousfield and E. M. Friedlander. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. In *Geometric applications of homotopy theory (Proc. Conf., Evanston, 11., 1977), II*, volume 658 of *Lecture Notes in Math.*, pages 80–130. Springer, Berlin, 1978.
- [3] P. G. Goerss and J. F. Jardine. *Simplicial Homotopy Theory*, volume 174 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, 1999.