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38 Spectra

The approach to stable homotopy that follows was
introduced in a seminal paper of Bousfield and
Friedlander [2], which appeared in 1978.

A spectrum X consists of pointed (level) simpli-
cial sets Xn, n≥ 0, together with bonding maps

σ : S1∧Xn→ Xn+1.

A map of spectra f : X → Y consists of pointed
maps f : Xn→ Y n which respect structure, in that
the diagrams

S1∧Xn σ //

S1∧ f ��

Xn+1

f
��

S1∧Y n
σ
//Y n+1

commute.
The category of spectra is denoted by Spt. This
category is complete and cocomplete.
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Examples:
1) Suppose Y is a pointed simplicial set. The sus-
pension spectrum Σ∞Y consists of the pointed sim-
plicial sets

Y, S1∧Y, S1∧S1∧Y, . . . ,Sn∧Y, . . .

where
Sn = S1∧·· ·∧S1

(n-fold smash power).

The bonding maps of Σ∞Y are the canonical iso-
morphisms

S1∧Sn∧Y ∼= Sn+1∧Y.

There is a natural bijection

hom(Σ∞Y,X)∼= hom(X ,Y 0).

The suspension spectrum functor is left adjoint to
the “level 0” functor X 7→ X0.

2) S = Σ∞S0 is the sphere spectrum.

3) Suppose X is a spectrum and K is a pointed
simplicial set.

The spectrum X ∧K has level spaces

(X ∧K)n = Xn∧K,
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and bonding maps

σ ∧K : S1∧Xn∧K→ Xn+1∧K.

There is a natural isomorphism

Σ
∞K ∼= S∧K.

3) X ∧S1 is the suspension of a spectrum X .

The fake suspension ΣX of X has level spaces
S1∧Xn and bonding maps

S1∧σ : S1∧S1∧Xn→ S1∧Xn+1.

Remark: There is a commutative diagram

S1∧S1∧Xn S1∧σ //

τ∧Xn
��

S1∧Xn+1

τ∼=

��

S1∧S1∧Xn

S1∧τ
∼=��

55

S1∧Xn∧S1
σ∧S1

//Xn+1∧S1

where τ flips adjacent smash factors:

τ(x∧ y) = y∧ x.

The dotted arrow (bonding map induced by σ∧S1)
differs from S1∧σ by precomposition by τ ∧Xn.

The flip τ : S1 ∧ S1 → S1 ∧ S1 is non-trivial: it is
multiplication by −1 in H2(S2).
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Recall some definitions and results from Section
15:

Suppose X is a simplicial set.

Write Z̃(X) for the kernel of the map Z(X) →
Z(∗).
Then Hn(X ,Z) = πn(Z(X),0) (see Theorem 15.4),
and H̃n(X ,Z) = πn(Z̃(X),0) (reduced homology).

If X is pointed there is a natural isomorphism

Z̃(X)∼= Z(X)/Z(∗),

and there is a natural pointed map

h : X
η−→ Z(X)→ Z̃(X)

(the Hurewicz map).

If A is a simplicial abelian group, there is a natural
simplicial map

γ : S1∧A→ Z̃(S1)⊗A =: S1⊗A,

defined by x∧a 7→ x⊗a.

4) The Eilenberg-Mac Lane spectrum H(A) as-
sociated to a simplicial abelian group A consists of
the spaces

A, S1⊗A, S2⊗A, . . .
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with bonding maps

S1∧ (Sn⊗A)
γ−→ S1⊗ (Sn⊗A)∼= Sn+1⊗A.

5) Suppose X is a spectrum and K is a pointed
simplicial set.

The spectrum hom∗(K,X) has

hom∗(K,X)n = hom∗(K,Xn),

with bonding map

S1∧hom∗(K,Xn)→ hom∗(K,Xn+1)

adjoint to the composite

S1∧hom∗(K,Xn)∧K S1∧ev−−−→ S1∧Xn σ−→ Xn+1.

There is a natural bijection

hom(X ∧K,Y )∼= hom(X ,hom∗(K,Y )).

Suppose X is a spectrum and n ∈ Z.

The shifted spectrum X [n] has

X [n]m =

{
∗ m+n < 0

Xm+n m+n≥ 0

Examples: X [−1]0 = ∗ and X [−1]n = Xn−1 for
n≥ 1.
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X [1]n = Xn+1 for all n≥ 0.

Remarks: 1) The bonding maps define a natural
map

ΣX → X [1].
We’ll see later that this map is a stable equiva-
lence, and that there is a stable equivalence ΣX '
X ∧S1.

2) There is a natural bijection

hom(X [n],Y )∼= hom(X ,Y [−n])

and a stable equivalence X [n][−n]→ X , so that all
shift operators are invertible in the stable category.

3) There is a natural bijection

hom(Σ∞K[−n],Y )∼= hom(K,Y n)

for n≥ 0, so that the nth level functor Y → Y n has
a left adjoint.

4) The nth layer LnX of a spectrum X consists of
the spaces

X0, . . . ,Xn, S1∧Xn, S2∧Xn, . . .

There are obvious maps LnX → Ln+1X → X and a
natural isomorphism

lim−→
n

LnX ∼= X .
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The functor X 7→ LnX is left adjoint to truncation
up to level n.

The system of maps

Σ
∞X0 = L0X → L1X → . . .

is called the layer filtration of X .

Here’s an exercise: show that there are natural
pushout diagrams

Σ∞(S1∧Xn)[−n−1] //

σ∗
��

LnX

��

Σ∞Xn+1[−n−1] // Ln+1X

39 Strict model structure

A map f : X → Y is a strict (levelwise) weak
equivalence (resp. strict (levelwise) fibration) if
all maps f : Xn→Y n are weak equivalences (resp.
fibrations) of pointed simplicial sets.

A cofibration is a map i : A→ B such that

1) i : A0→ B0 is a cofibration of (pointed) simpli-
cial sets, and

2) all maps

(S1∧Bn)∪(S1∧An) An+1→ Bn+1
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are cofibrations.

Exercise: Show that all cofibrations are levelwise
cofibrations.

Given spectra X ,Y , the function complex hom(X ,Y )
is a simplicial set with

hom(X ,Y )n = hom(X ∧∆
n
+,Y ).

Recall that ∆n
+ = ∆n t {∗} is the simplex with a

disjoint base point attached.

Proposition 39.1. With these definitions, the cate-
gory Spt of spectra satisfies the axioms for a proper
closed simplicial model category.

This model structure is also cofibrantly generated.

Proof. Suppose given a lifting problem

A α //

i
��

X
p
��

B
β

//

??

Y

where i is a cofibration and p is a strict fibration
and strict weak equivalence.

The lifting θ 0 exists in the diagram

A0 α //

i ��

X0

p
��

B0
β

//

θ 0
>>

Y 0
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and then θ 1 exists in the diagram

(S1∧B0)∪(S1∧A0) A1 (θ 0
∗ ,α)

//

co f
��

X1

p
��

B1
β

//

θ 1
55

Y 1

Proceed inductively to show that the lifting prob-
lem can be solved.

The lifting problem is solved in a similar way if
i is a trivial cofibration and p is a strict fibration.
We have proved the lifting axiom CM4.

Suppose that f : X → Y is a map of spectra, and
find a factorization

X0 i0 //

f   

Z0

p0
��

Y 0

in level 0, where i0 is a cofibration and p0 is a fi-
bration.

Form the diagram

S1∧X0 //

S1∧i0 ��

X1

f

��

i∗
ww

S1∧Z0 //

S1∧p0
��

(S1∧Z0)∪X1

f∗ ''
S1∧Y 0 //Y 1
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and find a factorization

(S1∧Z0)∪X1 j
//

f∗ &&

Z1

p1
��

Y 1

where j is a cofibration and p1 is a trivial fibration.
Write i1 = j · i∗.
We have factorized f as a cofibration followed by
a trivial fibration up to level 1. Proceed inductively
to show that f = p · i where p is a trivial strict fi-
bration and i is a cofibration.

The other factorization statement has the same proof,
giving CM5.

The simplicial model structure is inherited from
pointed simplicial sets, as is properness (exercise).

The generating sets for the cofibrations and trivial
cofibrations, respectively are the maps

Σ
∞(Λn

k)+[−m]→ Σ
∞

∆
n
+[−m]

and
Σ

∞(∂∆
n)+[−m]→ Σ

∞
∆

n
+[−m]

respectively.
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40 Stable equivalences

Suppose X is a pointed simplicial set, and recall
that the loop space ΩX is defined by

ΩX = hom∗(S1,X).

The construction only makes homotopy theoretic
sense (ie. preserves weak equivalences) if X is fi-
brant — in that case there are isomorphisms

πi+1(X ,∗)∼= πi(ΩX ,∗), i≥ 0,

of simplicial homotopy groups (∗ is the base point
for X), by a standard long exact sequence argu-
ment (see Section 31).

If X is not fibrant, then ΩX is most properly a de-
rived functor:

ΩX := ΩX f

where j : X → X f is a fibrant model for X in the
sense that j is a weak equivalence and X f is fibrant.

This construction can be made functorial, since
sSet∗ has functorial fibrant replacements.

There is a natural bijection

hom(Z∧S1,X)∼= hom(Z,ΩX).
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so that every morphism f : Z∧S1→X has a uniquely
determined adjoint f∗ : Z→ΩX .

We can say that a spectrum X consists of pointed
simplicial sets Xn,n≥ 0, and adjoint bonding maps
σ∗ : Xn→ΩXn+1

Here are two constructions::

1) There is a natural (levelwise) fibrant model j :
Y → FY in the strict model structure for Spt.
2) Suppose X is a spectrum. Set

Ω
∞Xn = lim−→ (Xn σ∗−→ΩXn+1 Ωσ∗−−→Ω

2Xn+2→ . . . ).

The comparison diagram

Xn σ∗ //

σ∗ ��

ΩXn+1 Ωσ∗ //

Ωσ∗��

Ω2Xn+2 //

Ω2σ∗��

· · ·

ΩXn+1
Ωσ∗

//Ω2Xn+2
Ω2σ∗

//Ω3Xn+3 // · · ·

determines a spectrum structure Ω∞X and a natu-
ral map ω : X →Ω∞X .

The adjoint bonding map

Ω
∞Xn σ∗−→Ω(Ω∞Xn+1)

is an isomorphism (exercise).
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Write QY = Ω∞FY and let η : Y → QY be the
composite

Y
j−→ FY ω−→Ω

∞FY = QY.

The spectrum QY is the stabilization of Y .

Say that a map f : X → Y is a stable equivalence
if the map f∗ : QX → QY is a strict equivalence.

Remarks:
1) All spaces QY n are fibrant (NB: this is a special
property of “ordinary” spectra), and the map σ∗ :
QY n→ΩQY n+1 is an isomorphism.

2) All QY n are H-spaces with groups π0QY n of
path components. All induced maps f∗ : QXn →
QY n are H-maps.

It follows that the maps f∗ : QXn→ QY n are weak
equivalences (or that f is a stable equivalence) if
and only if all maps

πi(QXn,∗)→ πi(QY n,∗)
based at the distinguished base point are isomor-
phisms.

Define the stable homotopy groups πs
kY , k ∈ Z

by

π
s
kY = lim−→

n+k≥0

(· · ·→ πn+kFY n→ πn+k+1FY n+1→ . . . ),
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where the maps of homotopy groups are induced
by the maps σ∗ : FY n→ΩFY n+1.

There are isomorphisms

πk(QY n,∗)∼= π
s
k−nY,

so f : X → Y is a stable equivalence if and only if
f induces an isomorphism in all stable homotopy
groups.

The strict model structure on the category of spec-
tra Spt and the stablization functor Q fits into a
general framework.

Suppose M is a right proper closed model category
with a functor Q : M→M, and suppose there is a
natural map ηX : X → QX .

Say that a map f : X→Y of M is a Q-equivalence
if the induced map Q f : QX→QY is a weak equiv-
alence of M.

Q-cofibrations are cofibrations of M.

A Q-fibration is a map which has the RLP wrt all
maps which are cofibrations and Q-equivalences.
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Here are some conditions:

A4 The functor Q preserves weak equivalences of
M.

A5 The maps ηQX ,Q(ηX) : QX → QQX are weak
equivalences of M.

A6′ Q-equivalences are stable under pullback along
Q-fibrations.

Theorem 40.1 (Bousfield-Friedlander). Suppose given
a right proper closed model category M with a
functor Q : M→M and natural map η : X →QX
as above. Suppose the Q-equivalences, cofibra-
tions and Q-fibrations satisfy the axioms A4, A5
and A6′.
Then M, together with these three classes of maps,
has the structure of a right proper closed model
category.

Proposition 40.2. The category Spt of spectra and
the stabilization functor Q satisfy the axioms A4,
A5 and A6′.
For the proof of Proposition 40.2, the condition
A4 is a consequence of the following:

Lemma 40.3. Suppose I is a filtered category, and
suppose given a natural transformation f : X→Y
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of functors X ,Y : I→ sSet such that each compo-
nent map fi : Xi→ Yi is a weak equivalence.

Then the map f∗ : lim−→i
Xi→ lim−→i

Yi is a weak equiv-
alence.

Proof. Exercise.

To verify condition A5, consider the diagram

X j
//

j
��

FX ω //

j'
��

Ω∞FX
j'
��

FX F j
'

//

ω
��

FFX Fω //

ω
��

FΩ∞FX
ω
��

Ω∞FX
Ω∞F j
' //Ω∞FFX

Ω∞Fω

//Ω∞FΩ∞FX

The indicated maps are strict weak equivalences,
so it suffices to show that Ω∞Fω and

ω : FΩ
∞FX →Ω

∞FΩ
∞FX

are strict weak equivalences.

Here’s another picture:

FX ω //

ω

&&
j

��

Ω∞FX
ω
∼= ((j '

��

Ω∞FX
Ω∞ j '

��

Ω∞ω

∼= //Ω∞Ω∞FX

Ω∞ j'

��

FFX Fω //

ω &&

FΩ∞FX
ω

((

Ω∞FFX
Ω∞Fω

//Ω∞FΩ∞FX
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It’s an exercise to show that Ω∞ω is an isomor-
phism: actually

ω = Ω
∞

ω : Ω
∞FX →Ω

∞
Ω

∞FX .

But then the required maps are strict equivalences.

To verify A6′, use the fact that every strict fibre se-
quence F→ X→Y induces a long exact sequence

· · · → π
s
kF → π

s
kX → π

s
kY

∂−→ π
s
k−1F → ···

(exercise). “Right properness” follows from an
exact sequence comparison.

This completes the proof of Proposition 40.2

The model structure on Spt arising from the Bousfield-
Friedlander Theorem via Proposition 40.2 and The-
orem 40.1 is called the stable model structure for
the category of spectra.

The homotopy category Ho(Spt) is the stable cat-
egory.

This is traditional usage, but also a misnomer, be-
cause there are many stable categories.
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The proof of Theorem 40.1 is accomplished with
a series of lemmas.

Recall that M is a right proper closed model cate-
gory with functor Q : M→M and natural transfor-
mation η : X → QX such that the following con-
ditions hold:

A4 The functor Q preserves weak equivalences of
M.

A5 The maps ηQX ,Q(ηX) : QX → QQX are weak
equivalences of M.

A6′ Q-equivalences are stable under pullback along
Q-fibrations.

Lemma 40.4. A map p : X → Y is a Q-fibration
and a Q-equivalence if and only if it is a trivial
fibration of M.

Proof. Every trivial fibration p has the RLP wrt all
cofibrations, and is therefore a Q-fibration. p is
also a Q-equivalence, by A4.

Suppose that p : X → Y is a Q-fibration and a Q-
equivalence.
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There is a factorization

X j
//

p ��

Z
π
��

Y
where j is a cofibration and π is a trivial fibration
of M.

π is a Q-equivalence by A4, so j is a Q-equivalence.

There is a diagram

X 1 //

j
��

X
p
��

Z
π
//

??

Y

since j is a cofibration and a Q-equivalence and p
is a Q-fibration.

Then p is a retract of π and is therefore a trivial
fibration of M.

Lemma 40.5. Suppose p : X → Y is a fibration of
M and the maps η : X → QX, η : Y → QY are
weak equivalences of M.

Then p is a Q-fibration.
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Proof. Consider the lifting problem

A α //

i
��

X
p
��

B
β

//

??

Y

There is a diagram

QA Qα //

jα &&
Qi
��

QX
Qp
��

Z pα

88

π

��
QB //

jβ &&

QY

W pβ

88

where jα , jβ are trivial cofibrations of M and pα , pβ

are fibrations.

There is an induced diagram

A //

i
��

Z×QX X //

π∗
��

X
p
��

B //W ×QY Y //Y

and the lifting problem is solved if we can show
that π∗ is a weak equivalence.

But there is finally a diagram

QA jα //

Qi
��

Z
π
��

Z×QX Xpr
oo

π∗
��

QB jβ
//W W ×QY Ypr

oo
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The maps Qi, jα and jβ are weak equivalences of
M so that π is a weak equivalence.

The maps pr are weak equivalences by right proper-
ness of M and the assumptions on p.

It follows that π∗ is a weak equivalence of M.

Lemma 40.6. Every map f : QX →QY has a fac-
torization f = q · j, where j is a cofibration and
Q-equivalence and q is a Q-fibration.

Proof. f has a factorization f = q · j where j is a
trivial cofibration and q is a fibration of M.

j is a Q-equivalence by A4, and q is a Q-fibration
by Lemma 40.5.

In effect, there is a diagram

QX j
'

//

η '
��

Z p
//

η
��

QY
η'
��

QQX Q j
' //QZ Qp

//QQY

so η : Z→ QZ is a weak equivalence of M.

Lemma 40.7. Every map f : X → Y has a factor-
ization f = q · j, where j is a cofibration and Q-
equivalence and q is a Q-fibration.
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Proof. The map f∗ : QX → QY has a factorization

QX f∗ //

i &&

QY

X p
88

where p is a Q-fibration and i is a cofibration and
a Q-equivalence, by Lemma 40.6.

Form the diagram

X i∗ //

η
��

Z×QY Y p∗ //

η∗
��

Y
η
��

QX i
// Z p

//QY

The maps η are Q-equivalence by A5, so η∗ is a
Q-equivalence by A6′. It follows that i∗ is a Q-
equivalence.

The map i∗ has a factorization

X i∗ //

j %%

Z×QY Y

W π
66

where j is a cofibration and π is a trivial strict fi-
bration.

Then π is a Q-equivalence and a Q-fibration by
Lemma 40.4, so j is a Q-equivalence, and the com-
posite p∗ ·π is a Q-fibration.
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Proof of Theorem 40.1. The non-trivial closed model
statements are the lifting axiom CM4 and the fac-
torization axiom CM5.

CM5 is a consequence of Lemma 40.4 and Lemma
40.7. CM4 follows from Lemma 40.4.

The right properness of the model structure is the
statement A6′.

Say that the model structure on M given by Theo-
rem 40.1 is the Q-structure.

Lemma 40.8. Suppose that, in addition to the as-
sumptions of Theorem 40.1, that the model struc-
ture M is left proper.

Then the Q-structure on M is left proper.

Proof. Suppose given a pushout diagram

A f
//

i
��

C

��

B f∗
//B∪A C

where f is a Q-equivalence and i is a cofibration.
We must show that f∗ is a Q-equivalence (see Def-
inition 17.4).
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Find a factorization

A j
//

f ��

D
π
��

C

where j is a cofibration and π is a trivial fibration
of M.

The map π∗ : B∪A D→ B∪A C is a weak equiv-
alence of M by left properness for M, so π∗ is a
Q-equivalence by A4.

j is a Q-equivalence as well as a cofibration, so
that j∗ : B→B∪A D is a cofibration and a Q-equiva-
lence.

Then the composite f∗= π∗ · j∗ is a Q-equivalence.

Here’s the other major abstract result in this game,
again from [2]:

Theorem 40.9. Suppose the model category M and
the functor Q satisfy the conditions for Theorem
40.1

Then a map p : X →Y of M is a stable fibration if
and only if the following conditions hold:

1) p is a fibration of M, and
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2) the diagram
X η

//

p
��

QX
Qp
��

Y
η
//QY

is homotopy cartesian in M.

Corollary 40.10. 1) An object X of M is Q-fibrant
if and only if it is fibrant and the map η : X →
QX is a weak equivalence of M.

2) A spectrum X is stably fibrant if and only if it
is strictly fibrant and all adjoint bonding maps
σ∗ : Xn→ΩXn+1 are weak equivalences of pointed
simplicial sets.

Fibrant spectra are often called Ω-spectra.

Corollary 40.11. Suppose given a diagram

X ' //

p
��

X ′

p′
��

Y '
//Y ′

in which p, p′ are fibrations and the horizontal maps
are weak equivalences of M.

Then p is a Q-fibration if and only if p′ is a Q-
fibration.
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Proof of Theorem 40.9. Suppose p : X →Y is a fi-
bration of M, and that the diagram

X η
//

p
��

QX
Qp
��

Y
η
//QY

is homotopy cartesian in M.

Then Qp has a factorization

QX i //

Qp ""

Z
q
��

QY

where i is a trivial cofibration and q is a fibration.
Then q is a Q-fibration by Lemma 40.5.

Factorize the weak equivalence θ : X → Y ×QY Z
(the square is homotopy cartesian) as

X i //

θ $$

W
π
��

Y ×QY Z

where π is a trivial fibration of M and i is a trivial
cofibration.

Then q∗ ·π is a Q-fibration (Lemma 40.4), and the
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lifting exists in the diagram

X 1 //

i
��

X
p
��

W q∗π
//

>>

Y

Thus, p is a retract of a Q-fibration, and is there-
fore a Q-fibration.

Conversely, suppose that p : X→Y is a Q-fibration,
and factorize Qp = q · i as above.

The map η∗ : Y ×QY Z→ Z is a Q-equivalence by
A6′, so θ is a Q-equivalence.

The picture
X θ //

p
��

Y ×QY Z
q∗~~

Y
is a weak equivalence of fibrant objects in the cat-
egory M/Y of objects fibred over Y , for the Q-
structure on M.

The usual category of fibrant objects trick (see Sec-
tion 13) implies that θ has a factorization

X i //

θ $$

V
π
��

Y ×QY Z
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in Spt/Y , where π is a Q-fibration and a Q-equivalence,
and i is a section of a map V → X which is a Q-
fibration and a Q-equivalence.

Thus, π and i are weak equivalences of M by Lemma
40.4, so that θ is a weak equivalence of M.

Write
A⊗K = A∧K+,

for a spectrum A and a simplicial set K.

Lemma 40.12. Suppose i : A→B is a stably trivial
cofibration of spectra.

Then all induced maps

(B⊗∂∆
n)∪ (A⊗∆

n)→ B⊗∆
n

are stably trivial cofibrations.

Quillen’s axiom SM7 for the stable model struc-
ture on Spt follows easily: if j : K→ L is a cofibra-
tion of simplicial sets and i : A→ B is a cofibration
of spectra, then the induced map

(B⊗K)∪ (A⊗L)⊂ B⊗L

is a cofibration which is a stable equivalence if ei-
ther i is a stable equivalence (Lemma 40.12) or j
is a weak equivalence of simplicial sets (use the
simplicial model axiom for the strict structure).
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Proof of Lemma 40.12. It suffices to show that

i⊗∂∆
n : A⊗∂∆

n→ B⊗∂∆
n

is a stable equivalence.

There is a pushout diagram

A⊗∂∆n−1 //

��

A⊗Λn
k

��

A⊗∆n−1 //A⊗∂∆n

There is also a corresponding diagram for B and
an obvious comparison.

The simplicial sets Λn
k and ∆n−1 are both weakly

equivalent to a point, so it suffices to show that the
comparison

i⊗∂∆
n−1 : A⊗∂∆

n−1→ B⊗∂∆
n−1

is a stable equivalence.

This is the inductive step in an argument that starts
with the case

i⊗∂∆
1 : A⊗∂∆

1→ B⊗∂∆
1

and this map is isomorphic to the map

i∧ i : A∧A→ B∧B.

Finally, a wedge (coproduct) of stably trivial cofi-
brations is stably trivial.
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Note: Bousfield gives a different proof of the Lemma
40.12 in [1]. The result is also mentioned in Re-
mark X.4.7 (on p.496) of [3], without proof.
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