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12 Kan fibrations

A map p : X → Y is a Kan fibration if it has the
RLP wrt all inclusions Λn

k ⊂ ∆n.

Example: A fibration of simplicial sets, (Section
11), is a Kan fibration, since |Λn

k| → |∆n| is a weak
equivalence.

The converse statement is also true: every Kan fi-
bration is a fibration. This is Theorem 13.5 below.

Say that X is a Kan complex if the map X → ∗ is
a Kan fibration.

Exercise: Suppose C is a small category. Show
that the nerve BC is a Kan complex if and only if
C is a groupoid.

Example: The ordinal number posets n are not
groupoids if n ≥ 1, so the simplices ∆n = Bn are
not Kan complexes.

The saturation of the set of cofibrations Λn
k ⊂ ∆n is

normally called the class of anodyne extensions.
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This is the class of cofibrations which has the LLP
wrt all Kan fibrations.

Lemma 12.1. The following sets of cofibrations
have the same saturations:

• A1 = all maps Λn
k ⊂ ∆n,

• A2 = all inclusions

(∆1×∂∆
n)∪ ({ε}×∆

n)⊂ ∆
1×∆

n, ε = 0,1.

Proof. 1) The saturation of A2 includes all maps

(∆1×K)∪ ({ε}×L)⊂ ∆
1×L, ε = 0,1.

induced by inclusions K ⊂ L, since L is built from
K by attaching cells.

The functor rk : n×1→ n specified by the picture

0 //

��

1 //

��

. . . // k //

��

k //

��

. . . // k

��
0 // 1 // . . . // k // k+1 // . . . // n

and the functor i : n → n× 1 defined by i( j) =
( j,1) together determine a retraction diagram

Λn
k

//

��

(Λn
k×∆1)∪ (∆n×{0}) //

��

Λn
k

��

∆n //∆n×∆1 //∆n

(NB: ∆n×{0} is mapped into Λn
k) so Λn

k ⊂ ∆n is in
the saturation of the family A2 if k < n.
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The map Λn
k ⊂ ∆n is a retraction of

(Λn
k×∆

1)∪ (∆n×{1})⊂ ∆
n×∆

1

if k > 0. Thus, the saturation of A1 is contained in
the saturation of A2.

2) The non-degenerate (n + 1)-simplices of hi :
∆n×∆1 are functors n+1→ n×1 defined by the
pictures

(0,0) // (1,0) // . . . // (i,0)

��

(i,1) // . . . // (i,n)

Let (∆n × ∆1)(i) be the subcomplex of ∆n × ∆1)

generated by ∂∆n×∆1 and the simplices h0, . . . ,hi.
Let

(∆n×∆
1)(−1) = (∂∆

n×∆
1)∪ (∆n×{0}).

Then (∆n×∆1)(n)=∆n×∆1, and there are pushouts

Λ
n+1
i+2

//

��

(∆n×∆1)(i)

��

∆n+1 // (∆n×∆1)(i+1)

It follows that the members of A2 are in the satu-
ration of the set A1.
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Lemma 12.2. Suppose i : K → L is an anodyne
extension and j : A→ B is a cofibration.

Then the inclusion

(K×B)∪ (L×A)⊂ L×B

is anodyne.

Proof. The class of cofibrations K′→ L′ such that

(K′×B)∪ (L′×A)⊂ L′×B

is anodyne is saturated, and includes all cofibra-
tions

(∆1×∂∆
n)∪ ({ε}×∆

n)⊂ ∆
1×∆

n, ε = 0,1,

by rebracketing (see [2, I.4.6]).

Corollary 12.3. The cofibrations

(Λn
k×∆

m)∪ (∆n×∂∆
m)⊂ ∆

n×∆
m

are anodyne.
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Here’s something else that Lemma 12.2 buys you:

Corollary 12.4. Suppose p : X→Y is a Kan fibra-
tion and j : A→ B is a cofibration.

Then the map

hom(B,X)
( j∗,p∗)−−−→ hom(A,X)×hom(A,Y )hom(B,Y )

is a Kan fibration.

If either p is a trivial fibration or j is anodyne,
then the map ( j∗, p∗) is a trivial fibration.

Proof. Solutions of the lifting problem

K //

i
��

hom(B,X)

( j∗,p∗)
��

L //

44

hom(A,X)×hom(A,Y ) hom(B,Y )

are equivalent to solutions of the lifting problem

(L×A)∪ (K×B) //

(i, j)∗
��

X
p
��

L×B //

66

Y

by the exponential law. The map (i, j)∗ is anodyne
if either i or j is anodyne, by Lemma 12.2.

Corollary 12.5. The function complex hom(X ,Y )
is a Kan complex if Y is a Kan complex.

The proof of Corollary 12.5 is an exercise.
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Lemma 12.6. Simplicial homotopy of maps

X → Y

is an equivalence relation if Y is a Kan complex.

Proof. It’s enough to show that simplicial homo-
topy classes of vertices ∆0→ Z is an equivalence
relation if Z is a Kan complex, since hom(X ,Y ) is
a Kan complex.

The paths
x

ω2−→ y
ω0−→ z

define a map (ω0, ,ω2) : Λ2
1→ Z which extends to

a 2-simplex σ : ∆2→ Z. The 1-simplex d1σ is a
path x→ z. Thus, the path relation is transitive.

Suppose ω2 : x→ y is a path in a Kan complex Z.
Let x : x→ x denote the constant path (degenerate
1-simplex) at x. Then there is a diagram

Λ2
0
( ,x,ω2) //

��

Z

∆2
θ

;;

so there is a path d0θ : y→ x. The path relation is
therefore symmetric.

The constant path ∆1 s0
−→ ∆0 x−→ X is a path from x

to x, so the relation is reflexive.

6



Path components
Write π0(Z) for the path components, aka. sim-
plicial homotopy classes of vertices ∆0→ Z for a
Kan complex of Z.

The argument for Lemma 12.6 implies that there
is a coequalizer

Z1
d0 //

d1
// Z0 // π0(Z)

in Set.
More generally, the set π0X of path components
is defined for an arbitrary simplicial set X by the
coequalizer

X1
d0 //

d1
//X0 // π0(X)

Exercise: Show that there is a natural bijection

π0(X)∼= π0(|X |)

for simplicial sets X .
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Combinatorial homotopy groups
Suppose Y is a Kan complex, and x∈Y0 is a vertex.

The map i∗ in the pullback diagram

Fx //

��

hom(∆n,Y )
i∗
��

∆0
x
// hom(∂∆n,Y )

is a Kan fibration by Corollary 12.4.
The vertices of the Kan complex Fx are diagrams

∂∆n

i
��

x //Y

∆n

==

or simplices α : ∆n→Y which restrict to the trivial
map ∂∆n→ ∆0 x−→ Y on the boundary.

The path components π0(Fx) are the simplicial ho-
motopy classes of maps

(∆n,∂∆
n)→ (Y,x)

rel ∂∆n.

πs
n(Y,x) denotes this set of simplicial homotopy

classes.

The set πs
n(Y,x) has the structure of a group for

n≥ 1, and this group is abelian if n≥ 2. These are
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the simplicial homotopy groups of a Kan complex.

The multiplication is specified for [α], [β ]∈ πs
n(Y,x)

by
[α]∗ [β ] = [dnσ ],

where σ : ∆n+1→ Y is a lifting

Λn+1
n

(x,...,x,α,?,β )
//

��

Y

∆n+1
σ

77

Equivalently, πs
n(Y,x) can be identified with ho-

motopy classes of maps

((∆1)×n,∂ ((∆1)×n))→ (Y,x)

by the same (prismatic) argument as the correspond-
ing result for topological spaces (Section 5).

The group πs
2(Y,x) is the group of automorphisms

of the constant loop x → x in the combinatorial
fundamental groupoid πs(Ω(Y )) for the loop ob-
ject Ω(Y ) at x. The loop “space” Ω(Y ) is defined
by the pullback diagram

Ω(Y ) //

��

hom(∆1,Y )

��

∆0
x
// hom(∂∆1,Y )
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The combinatorial fundamental groupoid πs(Z)
is defined for a Kan complex Z by analogy with
the definition of the fundamental groupoid of a
space. Exercise: Construct πs(Z).

This group multiplication is defined by one of the
two directions implicit in the maps

((∆1)×2,∂ (∆1)×2)→ (Y,x).

The second multiplication coincides with this one
(and has the same identity), since the inclusions

Λ
2
1×Λ

2
1→ ∆

2×∆
2

are anodyne (exercise). It follows that πs
2(Y,x) is

an abelian group.

The group laws for all πs
n(Y,x),n ≥ 2, are con-

structed similarly, and are abelian. πs
n(Y,x) is an

automorphism group of the combinatorial funda-
mental groupoid πsΩn−1(Y ) of the iterated loop
space Ωn−1(Y ) (at x).
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Long exact sequence
Suppose p : X → Y is a Kan fibration such that Y
(hence X) is a Kan complex.

Define the fibre F over a vertex y ∈ Y by the pull-
back diagram

F i //

��

X
p
��

∆0
y
//Y

Suppose x is a vertex of F . There is a boundary
homomorphism

∂ : π
s
n+1(Y,y)→ π

s
n(F,x)

which is defined for [α] ∈ πs
n+1(Y,y) by setting

∂ ([α]) = [d0θ ], where θ is a choice of lifting mak-
ing the diagram

Λ
n+1
0

x //

��

X
p
��

∆n+1
α

//

θ

==

Y

commute.

The same arguments as for Lemma 5.2 apply, giv-
ing
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Lemma 12.7. p : X → Y is a Kan fibration such
that Y is a Kan complex, and F is the fibre over a
vertex y ∈ Y .

1) For each vertex x ∈ F there is a sequence of
pointed sets

. . .πs
n(F,x)

i∗−→ π
s
n(X ,x)

p∗−→ π
s
n(Y, p(x)) ∂−→ π

s
n−1(F,x)→ . . .

. . .πs
1(Y, f (x)) ∂−→ π0(F)

i∗−→ π0(X)
p∗−→ π0(Y )

which is exact in the sense that ker = im every-
where.

2) There is a group action

∗ : π
s
1(Y, p(x))×π0(F)→ π0(F)

such that ∂ ([α]) = [α]∗ [x], and i∗[z] = i∗[w] iff
there is [β ] ∈ π1(Y, p(x)) st [β ]∗ [z] = [w].

Here’s a combinatorial analogue of Lemma 5.1:

Lemma 12.8. p : X → Y is a Kan fibration and
Y is a Kan complex. Suppose p induces a bijec-
tion π0(X)∼= π0(Y ), and isomorphisms πs

n(X ,x)∼=
πs

n(Y, p(x)) for all n ≥ 1 and all vertices x of X.
Then p is a trivial fibration of sSet.

Proof. Show that p has the right lifting property
with respect to all inclusions ∂∆n⊂ ∆n, n≥ 0. The
argument is the same as for Lemma 5.1.
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A combinatorial weak equivalence is a map f :
X → Y of Kan complexes that induces an isomor-
phism in all possible simplicial homotopy groups,
ie. f induces a bijection and isomrphisms

π
s
n(X ,x)∼= π

s
n(Y, f (x)), x ∈ X0,n≥ 1.

Equivalently, f induces a bijection

π0(X)∼= π0(Y )

and all diagrams

πs
n(X) //

��

πs
n(Y )

��

X0 //Y0

are pullbacks of sets. Here,

π
s
n(X) :=

⊔
x∈X0

π
s
n(X ,x).

By Lemma 12.8, a map p that is a Kan fibration
and a combinatorial weak equivalence between Kan
complexes must also be a trivial fibration.
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13 Simplicial sets and spaces

Here’s a major theorem, due to Quillen:

Theorem 13.1. The realization of a Kan fibration
is a Serre fibration.

Proof. This will only be a brief sketch — the de-
tails can be found, for example, [2, I.10].

The idea is to use the theory of minimal fibrations
to show that every Kan fibration p : X → Y has a
factorization

X
p ��

g
// Z

q
��

Y
where g is a trivial fibration (ie. has the right lift-
ing property with respect to all ∂∆n ⊂ ∆n) and q is
a minimal Kan fibration.

Garbriel and Zisman show [1], [2] that the realiza-
tion of a minimial fibration q : Z → Y is a Serre
fibration: the idea is that every pullback q−1(σ) of
a simplex σ : ∆n→ Y is isomorphic over ∆n to a
simplicial set F×∆n, where F is a fibre over some
vertex ∆n, and it follows that the realization of q is
locally a projection, hence a Serre fibration.
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The trivial fibration g sits in a diagram

X 1X //

(1X ,g)
��

X
g
��

X×Z pr
//

;;

Z

and is therefore a retract of a projection.

A Kan fibration p : X→Y is said to be minimal if,
given simplices α,β : ∆n→Y (with ∂ (α) = ∂ (β )

and p(α) = p(β )), then the existence of a diagram

∂∆n×∆1 pr
//

i×1 ��
∂∆n

��

∆n×∆1 h //

pr ��
X

p��
∆n //Y

(fibrewise homotopy rel boundary) forces α = β .

Every Kan fibration has a minimal Kan fibration as
a strong fibrewise deformation retract, and every
fibrewise weak equivalence of minimal fibrations
is an isomorphism. See [2, I.10].

The Milnor Theorem is a consequence of Quillen’s
theorem:

Theorem 13.2 (Milnor). Suppose Y is a Kan com-
plex and η : Y → S(|Y |) is the adjunction homo-
morphism.

Then η is a combinatorial weak equivalence.
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We need the path-loop fibre sequence for the proof
of Theorem 13.2.

If Y is a Kan complex, then the map ∂∆1 ⊂ ∆1

induces a Kan fibration

hom(∆1,Y )
(p0,p1)−−−−→ Y ×Y ∼= hom(∂∆

1,Y ),

and the induced maps p0, p1 are trivial fibrations,
by Corollary 12.4.

Take a vertex x ∈ Y , and form the pullback

PxY i //

p0∗
��

hom(∆1,Y )
p0
��

∆0
x

//Y

The map p0∗ is a trivial fibration, so PxY is con-
tractible.

There is a pullback

PxY i //

(p0∗,p1i)
��

hom(∆1,Y )
(p0,p1)
��

∆0×Y
(x,1Y )

//Y ×Y

so π = p1i : PxY → Y is a Kan fibration. The loop
space ΩY is the fibre of π over x ∈ Y .

We have the Kan fibre sequence

ΩY → PxY
π−→ Y
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This is the path-loop fibre sequence for the Kan
complex Y .

PxY is the path space at x.

Proof of Theorem 13.2. The map η : Y → S(|Y |)
induces a bijection π0(Y )∼= π0(S(|Y |)).
The maps

S(|ΩY |)→ S(|PxY |)→ S(|Y |)

form a Kan fibre sequence by Theorem 13.1 and
the exactness of the realization functor (Lemma
10.1).

The Kan complex S(|PxY |) is contractible.

There is a commutative diagram of functions

πs
1(Y,x)

η∗ //

∂ ∼=
��

πs
1(S(|Y |),x)
∼= ∂
��

π0(ΩY )
η∗

∼= // π0(S(|ΩY |))

so η∗ : πs
1(Y,x)→ πs

1(S(|Y |),x) is an isomorphism.

Inductively, all maps πs
n(Y,x)→ πs

n(S(|Y |),x) are
isomorphisms, for all vertices x of Y .

Corollary 13.3. There are natural isomorphisms

π
s
n(Y,x)∼= πn(|Y |,x)
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at all vertices x for all Kan complexes Y .

Proof. The adjunction isomorphism

[(∆n,∂∆
n),(S(X),x)]∼= [(|∆n|, |∂∆

n|),(X ,x)]

gives an isomorphism

π
s
n(S(X),x)∼= πn(X ,x)

for each space X .

Lemma 13.4. Suppose p : X → Y is a Kan fibra-
tion and a weak equivalence. Then p is a trivial
fibration.

Proof. The class of maps which are both Kan fi-
brations and weak equivalences is stable under pull-
back.

In effect, given a pullback diagram

Z×Y X //

p∗
��

X
p
��

Z //Y
the realization |p| is a trivial Serre fibration by
Theorem 13.1, so |p∗| is also a trivial Serre fibra-
tion, since realization preserves pullbacks.

It is enough to show (by a lifting argument) that,
if p : X → ∆n is a Kan fibration and a weak equiv-
alence, then p is a trivial fibration.
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As in the proof of Theorem 13.1, p has a factor-
ization

X g
//

p $$

F×∆n

pr
��

∆n

where g is a trivial fibration and the projection pr
is minimal.

pr is a weak equivalence, so all homotopy groups
of the space |F | vanish, and Theorem 13.2 (Mil-
nor Theorem) implies that all simplicial homotopy
groups of F vanish.

By Lemma 12.8, all lifting problems

∂∆m //

��

F×∆n

pr
��

∆m //

99

∆n

have solutions.

Theorem 13.5. Every Kan fibration is a fibration.

Proof. Suppose i : A→ B is a trivial cofibration.
Then i has a factorization

A j
//

i ��

Z
p
��

B
such that j is an anodyne extension and p is a Kan
fibration.

19



Then j is a weak equivalence, so p is a weak equiv-
alence, and is a trivial fibration by Lemma 13.4.

The lifting exists in the diagram

A j
//

i
��

Z
p
��

B 1B
//

??

B

so i is a retract of an anodyne extension and is
therefore an anodyne extension.

Thus, every Kan fibration has the right lifting prop-
erty with respect to all trivial cofibrations.

Remark: The approach to constructing the model
structure for simplicial sets that is given here is
non-standard.

Normally, as in [2], one decrees at the outset that
the Kan fibrations are the fibrations, and the weak
equivalences and cofibrations are as defined here.

The model structure is produced much more quickly
in these notes (as in [3]), at the expense of know-
ing that the Kan fibrations are the fibrations until
the very end.
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Replacing maps by fibrations
Suppose f : X → Y is a map of Kan complexes.

Form the pullback diagram

X×Y hom(∆1,Y ) f∗ //

p0∗
��

hom(∆1,Y ) p1 //

p0
��

Y

X f
//Y

where p0 and p1 are the trivial fibrations arising
from the standard path object

hom(∆1,Y )
(p0,p1)
��

Y

s
99

∆

//Y ×Y

for the Kan complex Y .

Remark: The right homotopy relation associated
to this path object is classical simplicial homotopy.

There is a pullback diagram

X×Y hom(∆1,Y ) f∗ //

(p0∗,p1 f∗)
��

hom(∆1,Y )
(p0,p1)
��

X×Y f×1Y
//Y ×Y

and X is fibrant, so π := p1 f∗ is a fibration.
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p0∗ is a trivial fibration. The map s f defines a sec-
tion s∗ of p0∗, so s∗ is a weak equivalence.

Finally, πs∗ = p1s f = f .

Thus, every map f : X → Y between Kan com-
plexes has a functorial factorization

X s∗ //

f
((

X×Y hom(∆1,Y )
π
��

Y

(1)

such that π is a fibration and s∗ is a section of a
trivial fibration.

Remark: This construction is an abstraction of the
classical replacement of a map by a fibration, and
works for the subcategory of fibrant objects in an
arbitrary simplicial model category.

The dual of this construction is the mapping cylin-
der, which replaces a map by a cofibration up to
weak equivalence (exercise).
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Simplicial sets and spaces

Theorem 13.6. The adjunction maps η : X→ S(|X |)
and ε : |S(Y )| → Y are weak equivalences, for all
simplicial sets X and spaces Y , respectively.

Proof. Every combinatorial weak equivalence f :
X → Y between Kan complexes is a weak equiva-
lence.

In effect, every map which is a fibration and a
combinatorial weak equivalence is a weak equiv-
alence by Lemma 12.8, and then one finishes by
replacing the map f with a fibration as above.

The adjunction map η : X→ S(|X |) is a weak equiv-
alence if X is fibrant (Theorem 13.2).

Choose a fibrant model for an arbitrary simplicial
set X , ie. a weak equivalence j : X → Z such that
Z is fibrant.

Then in the diagram

X η
//

'
��

S(|X |)
'
��

Z
η

' // S(|Z|)

the indicated maps are weak equivalences, so η :
X → S(|X |) is a weak equivalence too.
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Suppose Y is a space. In the triangle identity

S(Y ) η
//

1 %%

S(|S(Y )|)
s(ε)
��

S(Y )

S(ε) is a weak equiv. of Kan complexes, so ε :
|S(Y )| → Y is a weak equiv. of spaces.

The realization and singular functor adjunction

| | : sSet � CGWH : S

is a classic example of a Quillen equivalence. In
particular we have the following:

Corollary 13.7. The realization and singular func-
tors induce an adjoint equivalence

| | : Ho(sSet)� Ho(CGWH) : S.

The final result of this section gives the closed
“simplicial’ model structure for the sSet.
Lemma 13.8. Suppose p : X→Y is a fibration and
i : A→ B is a cofibration.

Then the induced map

hom(B,X)
(i∗,p∗)−−−→ hom(A,X)×hom(A,Y )hom(B,X)

(2)
is a fibration. This map is a trivial fibration if ei-
ther i or p is a weak equivalence.
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Proof. If j : K → L is a cofibration, then the in-
duced map

(B×K)∪(A×K) (A×L)→ B×L (3)

is a cofibration, which is a weak equivalence if ei-
ther i or j is a weak equivalence (exercise).

Use an adjunction argument to show that the map
(2) has the RLP wrt j : K → L if and only if the
map p : X → Y has the RLP wrt the map (3).

Roughly speaking (see [2] for a full definition),
a closed simplicial model category is a closed
model category M together with an internal func-
tion space construction with exponential law such
that the following holds:

SM7: Suppose p : X→Y is a fibration and i : A→
B is a cofibration. Then the map

hom(B,X)
(i∗,p∗)−−−→ hom(A,X)×hom(A,Y )hom(B,X)

is a fibration, which is trivial if either i or p is a
weak equivalence.

Second example: The category CGWH has a closed
simplicial model category structure, with the usual
mapping space construction. The statement SM7
follows from the observation that two cofibrations
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i : A→ B and j : C→ D induce a cofibration

(B×C)∪(A×C) (A×D)→ B×D,

which is trivial if either i or j is trivial (exercise).
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