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6 Example: Chain homotopy

C = an ordinary chain complex. We have two con-
structions:

1) CI is the complex with

CI
n =Cn⊕Cn⊕Cn+1

for n > 0, and with

CI
0 = {(x,y,z)∈C0⊕C0⊕C1 | (x−y)+∂ (z) = 0 }.

The boundary map ∂ : CI
n→CI

n−1 is defined by

∂ (x,y,z) = (∂ (x),∂ (y),(−1)n(x− y)+∂ (z)).

2) C̃ is the chain complex with

C̃n =Cn⊕Cn+1

for n > 0 and

C̃0 = {(x,z) ∈C0⊕C1 | x+∂ (z) = 0 }.
The boundary ∂ : C̃n→ C̃n−1 of C̃ is defined by

∂ (x,z) = (∂ (x),(−1)nx+∂ (z)).
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Lemma 6.1. The complex C̃ is acyclic.

Proof. If ∂ (x,z) = 0 then ∂ (x) = 0 and ∂ (z) =
(−1)n+1x. It follows that

∂ ((−1)n+1z,0) = (x,z)

if (x,z) is a cycle, so (x,z) is a boundary.

There is a pullback diagram

CI α //

p
��

C̃
p′
��

C⊕C
β

//C

in which p and p′ are projections defined in each
degree by p(x,y,z) = (x,y) and p′(x,z) = x. The
map α is defined by α(x,y.z) = (x− y,z), while
β (x,y) = x− y.

p′ is a fibration, and fibrations are closed under
pullback, so p is also a fibration. The maps α and
β are surjective in all degrees, and the diagram
above expands to a comparison

CI α //

p
��

C̃ //

p′
��

0

0 //C
∆

//

s
<<

C⊕C
β

//C // 0

where ∆ is the diagonal map.
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Lemma 6.1 and a long exact sequence argument
imply that the map s is a weak equivalence.

We have a functorial diagram

CI

p
��

C
∆

//

s
<<

C⊕C

(1)

in which p is a fibration and s is a weak equiva-
lence. This is a path object.

A commutative diagram of chain maps

CI

p
��

D
( f ,g)

//

h
;;

C⊕C

(2)

is a right homotopy between the chain maps f ,g :
D→C

The map h, if it exists, is defined by

h(x) = ( f (x),g(x),s(x))

for a collection of R-module maps s : Dn→Cn+1.
The fact that h is a chain map forces

s(∂ (x)) = (−1)n( f (x)−g(x))+∂ (s(x))

for x ∈ Dn. Thus

(−1)ns(∂ (x)) = ( f (x)−g(x))+∂ ((−1)ns(x)),
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so

(−1)ns(∂ (x))+∂ ((−1)n+1s(x) = f (x)−g(x).

The maps x 7→ (−1)n+1s(x), x ∈ Dn, arising from
the right homotopy h define a chain homotopy be-
tween the chain maps f and g.

All chain homotopies arise in this way.

Exercise: Show that there is a functorial diagram
of the form (1) for unbounded chain complexes C,
such that the corresponding right homotopies (2)
define chain homotopies between maps f ,g : D→
C of unbounded chain complexes.

7 Homotopical algebra

A closed model category is a category M equipped
with weak equivalences, fibrations and cofibrations,
such that the following hold:

CM1 The category M has all (finite) limits and col-
imits.

CM2 Given a commutative triangle

X g
//

h ��

Y

f��
Z
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in M , if any two of f ,g and h are weak equiv-
alences, then so is the third.

CM3 The classes of cofibrations, fibrations and weak
equivalences are closed under retraction.

CM4 Given a commutative solid arrow diagram

A //

i
��

X
p
��

B //

??

Y
such that i is a cofibration and p is a fibration.
Then the lift exists if either i or p is a weak
equivalence.

CM5 Every morphism f : X → Y has factorizations

Z
p

  
X f

//

i
>>

j   

Y

W
q

>>

where p is a fibration and i is a trivial cofi-
bration, and q is a trivial fibration and j is a
cofibration.
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Here’s the meaning of the word “closed”:

Lemma 7.1. 1) i : A→ B is a cofibration if and
only if it has the LLP wrt all trivial fibrations.

2) i : A→ B is a trivial cofibration if and only if
it has the LLP wrt all fibrations.

3) p : X →Y is a fibration if and only if it has the
RLP wrt all trivial cofibrations.

4) p is a trivial fibration if and only if it has the
RLP wrt all cofibrations.

Proof. I’ll prove statement 2). The rest are similar.

If i is a trivial cofibration, then it has the LLP wrt
all fibrations by CM4.

Suppose i has the LLP wrt all fibrations. i has a
factorization

A j
//

i ��

X
p
��

B
where j is a trivial cofibration and p is a fibration.
Then the lifting exists in the diagram

A j
//

i
��

X
p
��

B

??

1
//B
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Then i is a retract of j and is therefore a trivial
cofibration by CM3.

Corollary 7.2. 1) The classes of cofibrations and
trivial cofibrations are closed under composi-
tions and pushout. Any isomorphism is a triv-
ial cofibration.

2) The classes of fibrations and trivial fibrations
are closed under composition and pullback. Any
isomorphism is a trivial fibration.

Remark: Lemma 7.1 implies that, in order to de-
scribe a closed model structure, one needs only
specify the weak equivalences and either the cofi-
brations or fibrations.

We saw this in the descriptions of the model struc-
tures for the chain complex categories and for spaces.

7



Homotopies

1) A path object for Y ∈M is a commutative di-
agram

Y I

p
��

Y

s
<<

∆

//Y ×Y

such that ∆ is the diagonal map, s is a weak
equivalence and p is a fibration.

2) A right homotopy between maps f ,g : X → Y
is a commutative diagram

Y I

p
��

X
( f ,g)

//

h
;;

Y ×Y Y
∆

oo

s
cc

where p is the fibration for some (displayed)
path object for Y .

f is right homotopic to g if such a right homo-
topy exists. Write f ∼r g.

Examples: 1) Path objects abound in nature, since
the diagonal map ∆ : Y → Y ×Y factorizes as a
fibration following a trivial cofibration, by CM5.

2) Chain homotopy is a type of right homotopy in
both Ch+(R) and Ch(R).
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3) For ordinary spaces X , there is a space X I, whose
elements are the paths I→ X in X . Restricting to
the two ends of the paths defines a map d : X I →
X×X , which is a Serre fibration (exercise). There
is a constant path map s : X → X I, and a commu-
tative diagram

X I

d
��

X

s
;;

∆

//X×X

The composite X I d−→ X ×X
prL−−→ X is a trivial fi-

bration (exercise), so s is a weak equivalence.

The traditional path space defines a path object
construction. Right homotopies X → Y I are tra-
ditional homotopies X× I→ Y by adjointness.

Here’s the dual cluster of definitions:

1) A cylinder object for an object X ∈M is a
commutative diagram

X tX ∇ //

i
��

X

X⊗ I
σ

;;

where ∇ is the “fold” map, i is a cofibration
and σ is a weak equivalence.
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2) A left homotopy between maps f ,g : X → Y is
a commutative diagram

X X tX∇oo
( f ,g)

//

i
��

Y

X⊗ I
h

;;

σ

cc

where i is the cofibration appearing in some
cylinder object for X .

Say f is left homotopic to g if such a left ho-
motopy exists. Write f ∼l g.

Examples: 1) Suppose X is a CW -complex and I
is the unit interval. The standard picture

X tX ∇ //

i
��

X

X× I
pr

;;

is a cylinder object for X . The space X × I is ob-
tained from X tX by attaching cells, so i is a cofi-
bration.

2) There are lots of cylinder objects: the map ∇ :
X tX → X has a factorization as a cofibration fol-
lowed by a trivial fibration, by CM5.
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Duality
Here is what I mean by “dual”:

Lemma 7.3. M = a closed model category.

Say a morphism f op : Y → X of the opposite cat-
egory M op is a fibration (resp. cofibration, weak
equivalence) if and only if the corresponding map
f : X → Y is a cofibration (resp. fibration, weak
equivalence) of M .

Then with these definitions, M op satisfies the ax-
ioms for a closed model category.

Proof. Exercise.

Reversing the arrows in a cylinder object gives a
path object, and vice versa. All homotopical facts
about a model category M have equivalent dual
assertions in M op.

Examples: In Lemma 7.1, statement 3) is the dual
of statement 1), and statement 4) is the dual of
statement 2).

Lemma 7.4. Right homotopy of maps X→Y is an
equivalence relation if Y is fibrant.

The dual of Lemma 7.4 is the following:

Lemma 7.5. Left homotopy of maps X → Y is an
equivalence relation if X is cofibrant.
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Proof. Lemma 7.5 is equivalent to Lemma 7.4 in
M op.

Proof of Lemma 7.4. If Y if fibrant then any pro-
jection X×Y → X is a fibration (exercise).

Thus, if
Y I

(p0,p1)
��

Y
∆

//

s
<<

Y ×Y

is a path object for a fibrant object Y , then the
maps p0 and p1 are trivial fibrations.

Suppose given right homotopies

Y I

(p0,p1)
��

X //

h1
99

( f1, f2)
//Y ×Y

and Y J

(q0,q1)
��

X

h2
99

( f2, f3)
//Y ×Y

Form the pullback

Y I×Y Y J p∗ //

q∗
��

Y J

q0
��

Y I
p1

//Y

The diagram

Y I×Y Y J p∗ //

(q∗,q1 p∗)
��

Y J

(q0,q1)
��

Y I×Y p1×1
//Y ×Y
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is a pullback and p0× 1 : Y I×Y → Y ×Y is a fi-
bration, so the composite

Y I×Y Y J (p0q∗,q1 p∗)−−−−−−→ Y ×Y

is a fibration. The weak equivalences s,s′ from the
respective path objects determine a commutative
diagram

Y I×Y Y J

(p0q∗,q1 p∗)
��

Y
∆

//

(s,s′) ::

Y ×Y

and the map (s,s′) is a weak equivalence since
p0q∗ is a trivial fibration.

The homotopies h,h′ therefore determine a right
homotopy

Y I×Y Y J

(p0q∗,q1 p∗)
��

X
( f1, f3)

//

(h,h′) ::

Y ×Y

It follows that the right homotopy relation is tran-
sitive.

Right homotopy is symmetric, since the twist iso-
morphism Y ×Y

∼=−→ Y ×Y is a fibration.

Right homotopy is reflexive, since the morphism
s in a path object is a right homotopy from the
identity to itself.
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Here’s the result that ties the homotopical room
together:

Lemma 7.6. 1) Suppose Y is fibrant and X ⊗ I is
a fixed choice of cylinder object for an object
X. Suppose f ,g : X → Y are right homotopic.
Then there is a left homotopy

X tX
( f ,g)

//

i
��

Y

X⊗ I
h

;;

2) Suppose X is cofibrant and Y I is a fixed choice
of path object for an object Y . Suppose f ,g :
X→Y are left homotopic. Then there is a right
homotopy

Y I

p
��

X
( f ,g)

//

h
;;

Y ×Y

Proof. Statement 2) is the dual of statement 1).
We’ll prove statement 1).

Suppose

X tX ∇ //

i
��

X

X⊗ I
σ

;; and Y I

(p0,p1)
��

Y
∆

//

s
<<

Y ×Y
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are the fixed choice of cylinder and the path ob-
ject involved in the right homotopy f ∼r g, respec-
tively, and let h : X → Y I be the right homotopy.
Form the diagram

X tX
(s f ,h)

//

i
��

Y I

p0
��

p1 //Y

X⊗ I f σ
//

θ

88

Y

The lift θ exists because p0 is a trivial fibration
since Y is fibrant (exercise). The composite p1θ is
the desired left homotopy.

Corollary 7.7. Suppose f ,g : X→Y are morphisms
of M , where X is cofibrant and Y is fibrant. Sup-
pose

X tX ∇ //

i
��

X

X⊗ I
σ

;; and Y I

p
��

Y
∆

//

s
<<

Y ×Y

are fixed choices of cylinder and path objects for X
and Y respectively. Then the following are equiv-
alent:

• f is left homotopic to g.

• There is a right homotopy h : X→Y I from f to
g.
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• f is right homotopic to g.

• There is a left homotopy H : X⊗ I→ Y from f
to g.

Thus, if X is cofibrant and Y is fibrant, all notions
of homotopy of maps X → Y collapse to the same
thing.

Write f ∼ g to say that f is homotopic to g (by
whatever means) in this case.

Here’s the first big application:

Theorem 7.8 (Whitehead Theorem). Suppose f :
X → Y is a weak equivalence, and the objects X
and Y are both fibrant and cofibrant. Then f is a
homotopy equivalence.

Proof. We can assume that f is a trivial fibration:
every weak equivalence is a composite of a trivial
fibration with a trivial cofibration, and the trivial
cofibration case is dual.

Y is cofibrant, so the lifting exists in the diagram

/0 //

��

X
f
��

Y 1
//

j
??

Y
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Suppose
X tX ∇ //

i
��

X

X⊗ I
σ

;;

is a cylinder object for X , and then form the dia-
gram

X tX
( j f ,1)

//

i
��

X
f
��

X⊗ I f σ
//

h
;;

Y

The indicated lift (and required homotopy) exists
because f is a trivial fibration.

Examples: 1) (traditional Whitehead Theorem) Ev-
ery weak equivalence f : X → Y between CW -
complexes is a homotopy equivalence.

2) Every weak equivalence f : C→ D in Ch+(R)
between complexes of projective R-modules is a
chain homotopy equivalence.

3) Any two projective resolutions p : P→ M(0),
q : Q→M(0) of a module M are chain homotopy
equivalent.

The maps p and q are trivial fibrations, and both P
and Q are cofibrant chain complexes, so the lift θ
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exists in the diagram

Q
q
��

P p
//

θ

==

M(0)

The map θ is a weak equivalence of cofibrant com-
plexes, hence a chain homotopy equivalence.

3 bis) f : M → N a homomorphism of modules.
p : P→M(0), q : Q→N(0) projective resolutions.

The lift exists in the diagram

0 //

��

Q
q
��

P p
//

f1
55

M(0) f
//N(0)

since P is cofibrant and q is a trivial fibration, so f
lifts to a chain complex map f1.

If f also lifts to some other chain complex map
f2 : P→ Q, there is a commutative diagram

P⊕P
( f1, f2) //

i
��

Q
q
��

P⊗ I
σ
//

h
33

P p
//M(0) f

//N(0)

for some (any) choice of cylinder P⊗ I.
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Then f1 'l f2, so f1 and f2 are chain homotopic
since P is cofibrant and Q is fibrant.

4) X = a space. There is a trivial fibration p : U→
X such that U is a CW complex (exercise).

Suppose Y is a cofibrant space. Then Y is a retract
of a CW -complex (exercise).

Suppose f : X → Y and choose trivial fibrations
p : U → X and q : V → Y such that U and V are
CW -complexes. Then there is a map f ′ : U → V
which lifts f in the sense that the diagram

U f ′
//

p
��

V
q
��

X f
//Y

commutes, and any two such maps are “naively”
homotopic (exercise).
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8 The homotopy category

For all X ∈M find maps

X
pX←− QX

jX−→ RQX

such that

• pX is a trivial fibration and QX is cofibrant, and
jX is a trivial cofibration and RQX is fibrant
(and cofibrant),

• QX = X and pX = 1X if X is cofibrant, and
RQX = QX and jX = 1QX if QX is fibrant.

Every map f : X → Y determines a diagram

X
f
��

QXpXoo

f1
��

jX //RQX
f2
��

Y QYpY
oo

jY
//RQY

since QX is cofibrant and RQY is fibrant.

Lemma 8.1. The map f2 is uniquely determined
up to homotopy.

Proof. Suppose f ′1 and f ′2 are different choices for
f1 and f2 respectively.
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There is a diagram

QX tQX
( f1, f ′1) //

i
��

QY
pY
��

QX⊗ I
σ

//

55

QX f pX
//Y

for any choice of cylinder QX ⊗ I for QX , so f1

and f ′1 are left homotopic.

The maps jY f1 and jY f ′1 are left homotopic, hence
right homotopic because QX is cofibrant and RQY
is fibrant. Thus, there is a right homotopy

RQY I

p
��

QX
( jY f1, jY f ′1)

//

h
44

RQY ×RQY

for some (actually any) path object RQY I. Form
the diagram

QX h //

jX
��

RQY I

p
��

RQX
( f2, f ′2)

//

H
55

RQY ×RQY

Then f2 and f ′2 are homotopic.

π(M )c f is the category whose objects are the cofibrant-
fibrant objects of M , and whose morphisms are
homotopy classes of maps.
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Lemma 8.1 implies that there is a well-defined func-
tor

M → π(M )c f

defined by X 7→ RQX and f 7→ [RQ( f )], where

RQ( f ) = f2.

The homotopy category Ho(M ) of M has the same
objects as M , and has

homHo(M )(X ,Y ) = homπ(M )c f (RQX ,RQY ).

There is a functor

γ : M → Ho(M )

that is the identity on objects, and sends f : X→Y
to the homotopy class [RQ( f )].

γ takes weak equivalences to isomorphisms in Ho(M ),
by the Whitehead Theorem (Theorem 7.8).

Lemma 8.2. Suppose f : RQX → RQY represents
a morphism [ f ] : X → Y of Ho(M ). Then there is
a commutative diagram

X
[ f ]
��

QX
γ(pX )oo

[ f ]
��

γ( jX ) //RQX
γ( f )
��

Y QY
γ(pY )
oo

γ( jY )
//RQY

in Ho(M ).
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Proof. The maps γ(pX) and γ( jX) are isomorphisms
defined by the class [1RQX ] in π(M )c f .

Theorem 8.3. Suppose M is a closed model cate-
gory, and F : M → D takes weak equivalences to
isomorphisms.

There is a unique functor F∗ : Ho(M )→ D such
that the diagram of functors

M
γ
//

F %%

Ho(M )
F∗
��

D
commutes.

Proof. This result is a corollary of Lemma 8.2.

Remarks: 1) Ho(M ) is a model for the category
M [WE]−1 obtained from M by formally invert-
ing all weak equivalences.

2) γ : M → Ho(M ) induces a fully faithful func-
tor γ∗ : π(Mc f )→Ho(M ). Every object of Ho(M )

is isomorphic to a (cofibrant fibrant) object in the
image of γ∗.

It follows that the functor γ∗ is an equivalence of
categories.

This last observation specializes to well known
phenomena:
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• The homotopy category of CGWH is equiva-
lent to the category of CW -complexes and or-
dinary homotopy classes of maps between them.

• The derived category of Ch+(R) is equivalent
to the category of chain complexes of projec-
tives and chain homotopy classes of maps be-
tween them.

One final thing: the functor γ : M → Ho(M ) re-
flects weak equivalences:

Proposition 8.4. Suppose that M is a closed model
category, and that f : X → Y is a morphism such
that γ( f ) is an isomorphism in Ho(M ). Then f is
a weak equivalence of M .

For the proof, it is enough to suppose that both
X and Y are fibrant and cofibrant and that f is a
fibration with a homotopy inverse g : Y →X . Then
the idea is to show that f is a weak equivalence.

This claim is a triviality in almost all cases of inter-
est, but it is a bit tricky to prove in full generality.
This result appears as Proposition II.1.14 in

P. G. Goerss and J. F. Jardine. Simplicial Homotopy Theory,
volume 174 of Progress in Mathematics. Birkhäuser Verlag,
Basel, 1999
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