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7.14 The posted solution to 7.14 (Problem Set 7) was incorrect. Here is an elementary
solution. Denote the integral in the question by In and make the change of
variable y = nx so, integrating by parts, we get

In =
1

n

∫ ∞
0

e−y sin(n/y)dy =
1

n2

∫ ∞
0

y2e−y(cos(n/y))′dy =

=
1

n2

[
y2e−y cos(n/y)

∣∣∞
0
−
∫ ∞
0

(y2e−y)′ cos(n/y)dy

]
= − 1

n2

∫ ∞
0

(2y − y2)e−y cos(n/y)dy.

Since |cos(n/y)| ≤ 1 for all y ≥ 0, it follows that |In | ≤ 1
n2

∫∞
0
|2y − y2 | e−ydy.

The integral on the right is finite, hence lim
n→∞

In = 0.

11.6 Since m2(A) =
∫
[0,1]

m(sx(A))m(dx) = 1 it follows that m(sx(A)) ≤ 1 on

[0, 1] (of course, we also have m(sx(A)) ≥ 0 in [0, 1]). Indeed, if we assume
m(sx(A)) > 1 then

∫
[0,1]

m(sx(A))m(dx) >
∫
[0,1]

m(dx) = 1, which contradicts

the fact that m2(A) = 1. So, the function x 7→ 1−m(sx(A)) is nonnegative on
[0, 1] and, by hypothesis m2(A) =

∫
[0,1]

[m(sx(A))−1]m(dx) = 0. By Proposition

8.1 the result follows.

11.8 Let F be the family of all Lebesgue measurable subsets E ⊂ [0, 1]2 for which∫
E
f = 0. From the given condition it is straightforward to see that F contains

all the rectangles I × J where I = [a1, a2] ⊂ [0, 1] and J = [b1, b2] ⊂ [0, 1]:
first note that the condition implies

∫
[a1,a2]×[0,b1] f = 0 and

∫
[b1,b2]×[0,a1] f = 0;

then we have [0, a2] × [0, b2] = (I × J) ∪ ([0, a1]× [0, b1]) ∪ ([a1, a2]× [0, b1]) ∪
([b1, b2]× [0, a1]), where the union is disjoint. Applying the given condition and
elementary properties of the integral, this proves the statement we made above.
Again, applying the elementary properties of the Lebesgue integral, it follows
that all elementary sets are contained in F . Hence, all Borel measurable sets
in [0, 1]2 are contained in F , because F is a σ-algebra. Now, let A ⊂ [0, 1]2 be
the set over which f = f+ ≥ 0. Since A is Lebesgue measurable, there exists a
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Borel measurable subset B ⊂ A such that m(A \B) = 0 (Proposition 4.14(4)).
By the above, 0 =

∫
B
f =

∫
B
f+ which implies that f = f+ = 0 a.e. on B,

hence f = 0 a.e. on A. Similarly, there is a Borel set C ⊂ Ac = {(x, y) ∈
[0, 1]2 : f(x, y) = f−(x, y)} so, we deduce in the same way as above that f = 0
a.e. on Ac, which proves the result.

11.9 We have:∣∣∣∣ x2 − y2

(x2 + y2)3/4
log(4 + sinx)

∣∣∣∣ ≤ x2 + y2

(x2 + y2)3/4
log 5 = log 5 · (x2 + y2)1/4. (0.1)

The function (x, y) 7→ log 5 · (x2 + y2)1/4 is continuous on [0, 1]2 hence Lebesgue
(in fact, Riemann) integrable. By (0.1) we obtain∫
[0,1]2

∣∣∣∣ x2 − y2

(x2 + y2)3/4
log(4+sin x)

∣∣∣∣dm2(x, y) ≤
∫
[0,1]2

log 5·(x2+y2)1/4dm2(x, y) <∞,

where m2 is the two-dimensional Lebesgue measure. By Fubini’s theorem the
result follows.

11.10 (1) Define Rn :=
n⋃

k=1

[
k − 1

n
,
k

n

]2
, for all integers n ≥ 1. Clearly, Rn is Borel

measurable and it is not difficult to see that D = ∩∞n=1Rn, which proves
that D is Borel measurable.

(2) On one hand,∫
X

∫
Y

χD(x, y)µ(dy)m(dx) =

∫
X

µ(sx(D))m(dx)

=

∫
X

1m(dx) = 1,

since, for every fixed x ∈ X, sx(D) contains exactly one point. On the other
hand, ∫

Y

∫
X

χD(x, y)m(dx)µ(dy) =

∫
Y

m(sy(D))µ(dy)

=

∫
Y

0µ(dy) = 0,

since, for every fixed y ∈ Y , sy(D) contains exactly one point and its
Lebesgue measure is 0.

This does not contradict Fubini’s theorem because the counting measure µ
is not σ-finite on [0, 1] (otherwise, we would get that [0, 1] is a countable
union of finite sets, which is absurd).
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11.11 Let us compute the first integral:∫ ∫
f(x, y)dydx =

∫ ∞
0

∫ ∞
0

f(x, y)dydx

=

∫ ∞
0

(∫ x

0

f(x, y)dy +

∫ x+1

x

f(x, y)dy +

∫ x+2

x+1

f(x, y)dy +

∫ ∞
x+2

f(x, y)dy

)
dx

=

∫ ∞
0

(∫ x+1

x

1dy +

∫ x+2

x+1

(−1)dy

)
dx =

∫ ∞
0

(1− 1)dx = 0,

where we used that, by the definition of f ,
∫ x

0
f(x, y)dy =

∫∞
x+2

f(x, y)dy = 0. To

compute the second integral, note that
∫∞
2

∫∞
0
f(x, y)dxdy =

∫∞
2

(
∫ y−1
y−2 (−1)dx+∫ y

y−1 1dx)dy = 0. So∫ ∫
f(x, y)dxdy =

∫ 2

0

∫ ∞
0

f(x, y)dxdy

=

∫ 1

0

(∫ y

0

1dx

)
dy +

∫ 2

1

(∫ y−1

0

(−1)dx+

∫ y

y−1
1dx

)
dy

=

∫ 1

0

ydy +

∫ 2

1

(−y + 1 + 1)dy = 1/2 + (−4/2 + 1/2 + 2) = 1.

Let A ⊂ R2 be the set on which f 6= 0. Then |f | = 1, so, if we let m2 denote
the Lebesgue measure on R2,

∫ ∫
|f | dm2 =

∫
A

1dm2 = m2(A) = ∞, hence f
is not integrable on R2. This is the reason why the above does not contradict
Fubini’s theorem.

3. For every n ≥ 2 and a ≥ 0 denote by Sa
n the set S defined in the question. We

prove by induction that
∫
Rn χSa

n
= an/n!. Let mn denote the Lebesgue measure

on Rn. Note that Sa
n is a closed, bounded region of Rn hence mn(Sa

n) < ∞,
which implies that χSa

n
is integrable, so we can apply Fubini. For n = 2 we have∫

R2

χSa
2
dm2 =

∫
Sa
n

dm2 =

∫ a

0

∫ a−x1

0

dx2dx1 = a2 − x21
2

∣∣∣∣a
0

=
a2

2
.

Now, suppose that for all a > 0,
∫
Rn χSa

n
= an

n!
for some n ≥ 2. Then,∫

Rn+1

χSa
n+1
dmn+1 =

∫ a

0

(∫ a−x1

0

· · ·
∫ a−x1−···−xn

0

dxn+1 . . . dx2

)
dx1.

Note that a− x1 ≥ 0 and the integral between brackets is equal to
∫
Rn χs

a−x1
n

=

(a− x1)n/n!, by the induction hypothesis. So,∫
Rn+1

χSn+1dmn+1 =

∫ a

0

(a− x1)n/n!dx1 = an+1/(n+ 1)!.
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11.1 Recall that if (X,A) is measurable, a complex-valued function f : X → C,
f = u + iv is said to be measurable if u and v are measurable (as real-valued
functions). Also, if (X,A, µ) is a measure space, f is integrable if

∫
X
|u|+|v|dµ <

∞, which is the same as saying that both u and v are integrable.

A version of Fubini’s theorem for a complex-valued function f : X × Y → C,
f = u + iv can be stated as in the real case (Theorem 11.3) by keeping all
the conditions and statements the same, except for conditions (a), (b) which we
replace with: either u, v are both integrable, or both nonnegative, or at least
one of u, v is nonnegative and the other one is integrable. The proof of the
statement follows by applying Fubini’s theorem for real-valued functions to u
and v, as required. Note that the new conditions introduced above allow us to
do so. In these notes we prove only point (5).∫
f(x, y)d(µ× ν)(x, y) =

∫
u(x, y)d(µ× ν)(x, y) + i

∫
v(x, y)d(µ× ν)(x, y)

=

∫ ∫
u(x, y)dµ(x)dν(y) + i

∫ ∫
v(x, y)dµ(x)dν(y)

=

∫ (∫
(u+ iv)dµ(x)

)
dν(y) =

∫ ∫
f(x, y)dµ(x)dν(y).

We used Theorem 11.3 in the second equality, then the linearity of the integral
together with Proposition 7.5 regarding multiplying an integral with a complex
constant. The other equality follows similarly.

5. We compute
∫∞
0

sinx
x
dx (implicitly showing that the integral converges) which

would also give us the required limit. Using the two hints provided in the
question we get∫ ∞

0

1

x
sinx dx =

1

2i

∫ ∞
0

(∫ ∞
0

e−txdt

)
(eix − e−ix)dx

=
1

2i

∫ ∞
0

∫ ∞
0

(
e(−t+i)x − e(−t−i)x

)
dtdx

=
1

2i

∫ ∞
0

∫ ∞
0

[
e−tx(cosx+ i sinx)− e−tx(cosx− i sinx)

]
dtdx

=

∫ ∞
0

∫ ∞
0

e−tx sinx dtdx =

∫ ∞
0

∫ ∞
0

e−tx sinx dxdt.

Let I :=
∫∞
0
e−tx sinx dx. Using integration by parts, we obtain

I = 1− t
(
e−tx sinx

∣∣∞
0

+ tI
)

which gives I =
1

1 + t2
. Then, our integral becomes

∫ ∞
0

1

1 + t2
dt = arctan

∣∣∞
0

=

π

2
.
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6. If t1 < t2, then {x : |f(x)| ≥ t2} ⊂ {x : |f(x)| ≥ t1} and both sets are
measurable, so µf (t2) ≤ µf (t1), which proves monotonicity. As every monotone
function, µf is thus Borel measurable, since for any s ∈ R, µ−1f ((s,∞)) is either
the empty set or an interval.

7. Using the hint,∫
X

|f(x) |p dµ(x) =

∫
X

(∫ |f(x) |
0

ptp−1dt

)
dµ(x)

=

∫
X

(∫ ∞
0

ptp−1χ[0,|f(x) |](t)dt

)
dµ(x)

=

∫ ∞
0

ptp−1
(∫

X

χ[0,|f(x) |](t)dµ(x)

)
dt

=

∫ ∞
0

ptp−1
(∫

X

χAt(x)dµ(x)

)
dt

=

∫ ∞
0

ptp−1µ(At)dt

=

∫ ∞
0

µf (t)ptp−1dt.

In the third equality we were able to use Fubini because the function (x, t) 7→
ptp−1χ[0,|f(x) |](t) is nonnegative (and of course, because both µ and the Lebesgue
measure on R are σ-finite).
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