Problem Set 8 March 14, 2018.

1. Exercise 11.6.

2. Exercises 11.8–11.11.

3. Let $n \geq 2$ and let S be a standard n-simplex in \mathbb{R}^n with base of length a, for some a > 0. That is,

$$S := \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i \le a\}.$$

Use Fubini Theorem (and induction) to find the Lebesgue integral $\int_{\mathbb{R}^n} \chi_S$.

4. Exercise 11.1.

5. Use Fubini Theorem from Problem 4, along with

$$\int_0^\infty e^{-tx}dt = \frac{1}{x} \quad \text{and} \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

(where i is the imaginary unit), to show that

$$\lim_{n\to\infty} \int_0^n \frac{\sin x}{x} \, dx = \frac{\pi}{2} \, .$$

For Problems 6 and 7, let (X, \mathcal{M}, μ) be a σ -finite measure space, and let $f: X \to \mathbb{R}$ be an \mathcal{M} -measurable function. Define the distribution function of f by

$$\mu_f(t) := \mu(\{x \in X : |f(x)| \ge t\}), \quad t > 0.$$

6. Show that $\mu_f:(0,\infty)\to [0,\mu(X)]$ is non-increasing and Borel measurable.

7. Prove that, for any $p \in [1, \infty)$,

$$\int_X |f(x)|^p d\mu(x) = \int_0^\infty \mu_f(t) p t^{p-1} dt.$$

Hint: $|f(x)|^p = \int_0^{|f(x)|} pt^{p-1} dt$.