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1 (i) Reflexivity: obvious Symmetry: obvious (because all conditions are iff)
Transitivity: Suppose x ∼ y and y ∼ z then we have x ∈ A ⇐⇒ y ∈
A ⇐⇒ z ∈ A,∀A ∈ A. This gives us transitivity.

1 (ii) Given x ∈ X, we have y ∈ [x]∼ only if y ∈ A for all A ∈ A such that
x ∈ A. Hence, [x]∼ ⊂

⋂
{A ∈ A : x ∈ A}. Conversely, if y /∈ [x]∼ then

y /∈ A0 for some A0 ∈ A with x ∈ A0. Then, y /∈
⋂
{A ∈ A : x ∈ A}. The

containment [x]∼ ∈ A follows from the fact that the above intersection is
finite.

1 (iii) By part (ii) and the finiteness of X, it suffices to show that if A ∈ A and
x ∈ A then [x]∼ ⊂ A. The latter though is just a consequence of the
definition of ∼.

The problems assigned from the text

2.1 Consider X = {1, 2, 3} and M = {∅, {1}, {2}, {3}, X}. It can easily be
seen thatM is a monotone class. However,M is not a σ-algebra because
{1} ∪ {2} /∈M.

2.3 We may construct a counter example. Consider X = Z+. For i ≥ 1, let
Ai be the σ-algebra consisting of all the subsets of {1, 2, . . . , i} and their
complements. Consider Ai = {2i}. Now Ai ∈

⋃∞
i=1Ai, but

⋃∞
i=1Ai /∈⋃∞

i=1Ai. The latter is because
⋃∞

i=1Ai contains only sets that are either
finite or co-finite.

2.4 We may use a similar counter example as above, except forAi = {2, 4, . . . , 2i}.

2.5 X ∈ B because X = f−1(Y ). ∅ ∈ B because ∅ = f−1(∅). If B ∈ B then
B = f−1(A) for some A ∈ A. Then, Bc = (f−1(A))c = f−1(Ac) is in
B. The equality f−1(∪∞i=1Ai) = ∪∞i=1f

−1(Ai) gives us the closure under
countable unions.

2.6 We first prove that A is infinite. This implies that it is uncountable by the
solution of 2.8. We choose A0 ∈ A, A0 6= ∅. Then by the property given
we have A0 = A1 ∪ A′1, with A1 ∩ A′1 = ∅, and A1, A

′
1 6= ∅. Inductively,

from An ∈ A, we may again find An+1, A
′
n+1. These sets form a sequence
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A0 ) A1 ) · · · ⊇ An ) An+1 ) . . . . Further we have An 6= ∅,∀n ∈ N,
and An ∈ A,∀n ∈ N. Thus |A| ≥ ℵ0, and hence by 2.8 |A| > ℵ0.

2.7 We have ∅ ∈ A because (the constant function) 0 ∈ F . X ∈ A because
1 ∈ F . Further, for any A ⊂ X, A ∈ A =⇒ χA ∈ F =⇒ 1 − χA ∈
F =⇒ Ac ∈ A. Now we prove closure under infinite intersections because
it is simpler. Note that if Ai ∈ A then χ∩n

i=1Ai =
∏n

i=1 χAi ∈ F . Now
χ∩n

i=1Ai → χ∩∞
i=1Ai as n→∞, and hence χ∩∞

i=1Ai ∈ F =⇒ ∩∞i=1Ai ∈ A.

2.8 We use the first problem of the assignment as a hint. Consider the same
equivalence relation. Suppose this time that A, a σ-algebra, has a count-
able and infinite number of members. If there are a finite number of
equivalence classes of ∼, then A is finite. However if there are an infinite
number of equivalence classes then all their countable unions are in A
which implies that |A| > ℵ0, which is a contradiction.

3.1 Consider Bi pairwise disjoint. Define An = ∪ni=1Bi. Then we see that
∪∞i=1Ai → ∪∞i=1Bi as n→∞. Thus we have, µ(∪∞i=1Ai) = limi→∞ µ(Ai) =

limi→∞
∑i

j=1 µ(Bi) = µ(∪∞i=1Ai).

3.2 Consider An = ∪∞i=1Bi \ ∪ni=1Bi. Now µ(Ai) +
∑n

i=1 µ(Bi) = µ(∪∞i=1Bi).
(Note that µ(Bi) < ∞ because of the finiteness condition) Taking the
limits of both sides we see that µ is a measure.

3.4 The result follows immediately, when all the quantities involved are finite,
from adding the relations µ(A \ B) + µ(B ∩ A) = µ(A) and µ(A ∪ B) =
µ(A \ B) + µ(B). It is easy to check that the relation holds in the case
when any of the measures is infinite.

3.5 The required property reduces to the consideration of the interchange
of the order of the double sum

∑∞
n=1

∑∞
i=1 anµn(Ai), where the Ai are

pairwise disjoint members of A. In the case where all the summands are
finite, this can be done because if any rearrangement yielded a finite sum,
then all rearrangements would yield a finite sum. The case with even a
single infinite summand is trivial.

3.6 This follows from the fact that, if {Ai}i is a pairwise disjoint family in A,
then {Ai ∩ B}i is also a pairwise disjoint family. One then easily checks
the countable additivity property from the definition of ν in terms of µ.

3.7 This is true. Suppose that {Ai}i is a pairwise disjoint family of sets of A.

Then we have limn→∞ limk→∞
∑k

i=1 µn(Ai) = supn∈N supk∈N
∑k

i=1 µn(Ai) =

supk∈N supn∈N
∑k

i=1 µn(Ai), which proves that µ is a measure. Note that
monotonocity is essential in the previous argument. In the monotonically
decreasing case the finiteness is essential as it allows us to interchange two
limits in the corresponding double sequence.
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