Solutions for Problem Set 10 MATH 4122/9022

Octavian Mitrea

April 10, 2018
10.1 Since $\left\{f_{n}\right\}$ is Cauchy in measure, there exists a subsequence $\left\{f_{n_{k}}\right\}$ such that

$$
\mu\left(\left\{x:\left|f_{n_{k+1}}-f_{n_{k}}\right|>1 / 2^{k}\right\}\right)<1 / 2^{k}
$$

(just choose $a=\varepsilon=1 / 2^{k}$ and apply the definition of being Cauchy in measure). So, if we denote $E_{k}:=\left\{x:\left|f_{n_{k+1}}-f_{n_{k}}\right|>1 / 2^{k}\right\}$ we have $\mu\left(E_{k}\right)<1 / 2^{k}$. Since $\cup_{j=k+1}^{\infty} E_{j} \subset \cup_{j=k}^{\infty} E_{j}$, it follows that $\mu\left(\cap_{k=1}^{\infty} \cup_{j=k}^{\infty} E_{j}\right)=\lim _{k \rightarrow \infty} \mu\left(\cup_{j=k}^{\infty} E_{j}\right) \leq$ $\lim _{k \rightarrow \infty} \sum_{j=k}^{\infty} 1 / 2^{j}=\lim _{k \rightarrow \infty} 1 / 2^{k-1}=0$. Let $E:=\cap_{k=1}^{\infty} \cup_{j=k}^{\infty} E_{j}$. If $x \notin E$ there exists k s.t. $x \notin \cup_{j=k}^{\infty} E_{j}$, hence for all $j, l \geq k\left|f_{n_{j}}(x)-f_{n_{l}}(x)\right|<1 / 2^{k-1}$, i.e. $\left\{f_{n_{k}}(x)\right\}$ is a Cauchy sequence. Then, for $x \notin E, \lim _{j \rightarrow \infty} f_{n_{j}}(x)$ exists. Define

$$
f(x):=\left\{\begin{array}{l}
\lim _{j \rightarrow \infty} f_{n_{j}}(x), \text { if } x \notin E \\
0, \text { if } x \in E
\end{array}\right.
$$

which is well defined and measurable (we leave this last statement to be proved by the reader, as an exercise). It follows that $f_{n_{j}} \rightarrow f$ a.e. as $j \rightarrow \infty$, since $\mu(E)=0$. For a fixed j and $x \notin \cup_{l=j}^{\infty} E_{l}$ we have, as we proved above, $\left|f_{n_{j}}(x)-f_{n_{l}}(x)\right| \leq 1 / 2^{j-1}, \forall l \geq j$, hence $\left|f_{n_{j}}(x)-f(x)\right|=\left|f_{n_{j}}(x)-\lim _{l \rightarrow \infty} f_{n_{l}}(x)\right|=$ $\lim _{l \rightarrow \infty}\left|f_{n_{j}}(x)-f_{n_{l}}(x)\right| \leq 1 / 2^{j-1}$. It follows that $\left\{x:\left|f_{n_{j}}(x)-f(x)\right| \geq\right.$ $\left.1 / 2^{j-1}\right\} \subset \cup_{l=j}^{\infty} E_{l}$, hence $\mu\left(\left\{x:\left|f_{n_{j}}(x)-f(x)\right| \geq 1 / 2^{j-1}\right\}\right) \leq \mu\left(\cup_{l=j}^{\infty} E_{l}\right) \leq$ $1 / 2^{j-1}$ which converges to 0 as $j \rightarrow \infty$. This proves that the subsequence $\left\{f_{n_{j}}\right\}$ converges to f in measure. Of course, we have $\left|f_{n}(x)-f(x)\right| \leq\left|f_{n}(x)-f_{n_{j}}(x)\right|+$ $\left|f_{n_{j}}(x)-f(x)\right|$, so if $\left|f_{n}(x)-f(x)\right|>a$ then $\left|f_{n}(x)-f_{n_{j}}(x)\right| \geq a / 2$ or $\left|f_{n_{j}}(x)-f(x)\right| \geq$ $a / 2$. This implies that $\left\{x:\left|f_{n}(x)-f(x)\right|>a\right\} \subset\left\{x:\left|f_{n}(x)-f_{n_{j}}(x)\right| \geq\right.$ $a / 2\} \cup\left\{x:\left|f_{n_{j}}(x)-f(x)\right| \geq a / 2\right\}$. Applying the facts that $\left\{f_{n}\right\}$ is Cauchy in measure and $f_{n_{j}}$ converges in measure to f, the sets on the right hand side have arbitrarily small measure (for j, n large enough), which proves the statement.
10.2 The symmetry and nonnegativity of d are obvious. Also, $d(f, g)=0$ implies $\int|f-g| /(1+|f-g|) d \mu=0$, hence $|f-g|=0$ a.e. Lastly, for the triangle inequality evaluate the expression $D:=d(f, h)+d(h, g)-d(f, g)$. After elementary calculations, we find that D has positive denominator and its numerator
is given by $|f-h|+|h-g|-|f-g|+|f-h||h-g|+|h-g||f-h|$ which is nonnegative (apply the triangle inequality to the first three terms). Suppose now that $f_{n} \rightarrow f$ in measure. The function $t \mapsto t /(1+t)$ is increasing so, for all $\varepsilon>0, d\left(f_{n}, f\right)=\int_{X} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=\int_{\left|f_{n}-f\right|<\varepsilon} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+$ $\int_{\left|f_{n}-f\right| \geq \varepsilon} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \varepsilon \mu(X)+\mu\left(\left|f_{n}-f\right| \geq \varepsilon\right)$, where the last term converges to 0 as $n \rightarrow \infty$, because of the convergence in measure of f_{n}. It follows that $\lim _{n \rightarrow \infty} d\left(f_{n}, f\right) \leq \varepsilon \mu(X)$ for all $\varepsilon>0$, which implies $\lim _{n \rightarrow \infty} d\left(f_{n}, f\right)=0$ since $\mu(X)<\infty$. For the converse, fix $\varepsilon>0$. Then $\frac{\varepsilon}{1+\varepsilon} \mu\left(\left\{\left|f_{n}-f\right| \geq \varepsilon\right\}\right)=$ $\frac{\varepsilon}{1+\varepsilon} \int_{\left\{\left|f_{n}-f\right| \geq \varepsilon\right\}} d \mu \leq \int_{\left\{\left|f_{n}-f\right| \geq \varepsilon\right\}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \leq \int_{X} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \rightarrow 0$, where we used that on $\left\{\left|f_{n}-f\right| \geq \varepsilon\right\}$ we have $\frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} \geq \frac{\varepsilon}{1+\varepsilon}$.
10.3 Let $\left\{f_{n_{k}}\right\}$ be a subsequence of $\left\{f_{n}\right\}$ such that $\int f_{n_{k}} \rightarrow \liminf _{n \rightarrow \infty} \int f_{n}$ (such subsequence always exists by the definition of liminf of a sequence of numbers). As a subsequence of a sequence converging in measure to $f,\left\{f_{n_{k}}\right\}$ converges in measure to f. Hence, there exists a subsequence $\left\{g_{n}\right\}$ of $\left\{f_{n_{k}}\right\}$ (which we denoted as g_{n} to avoid the proliferation of indices) that converges to f a.e. Also, $\int g_{n} \rightarrow \liminf _{n \rightarrow \infty} \int f_{n}$ (as a subsequence of $\left\{f_{n_{k}}\right\}$). So, $\int f=\int \lim _{n \rightarrow \infty} g_{n}=\int \liminf _{n \rightarrow \infty} g_{n} \leq \liminf _{n \rightarrow \infty} \int g_{n}=\lim _{n \rightarrow \infty} \int g_{n}=\liminf _{n \rightarrow \infty} \int f_{n}$ which proves the statement.
10.4 Denote by $f_{n}:=\chi_{A_{n}}$ for all n and let $\left\{g_{n}\right\}$ be a subsequence of $\left\{f_{n}\right\}$ such that $g_{n} \rightarrow f$ a.e.. Every function g_{n} satisfies $g_{n}(X) \subset\{0,1\}$, where X is the underlining set of the measure space. Then, $f(X) \subset\{0,1\}$ a.e. since $g_{n} \rightarrow f$ a.e.. Let $E:=\left\{x \in X: \lim _{n \rightarrow \infty} g_{n}(x)=f(x)\right\}$. Then, $A:=E \cap\{f=1\}=$ $\cup_{n} \cap_{m \geq n}\left\{g_{m}=1\right\}$ is measurable and $f=\chi_{A}$ a.e..
10.5 For every $\varepsilon>0$ let F_{ε} be the measurable set on which f_{n} converges to f uniformly and $\mu\left(F_{\varepsilon}^{c}\right)<\varepsilon$. Define $A:=\cap_{m} F_{1 / m}^{c}$, for $m \in \mathbb{Z}_{+}$, which is clearly measurable. Then $\mu(A) \leq \mu\left(F_{1 / m}^{c}\right) \leq 1 / m$ for all m, hence $\mu(A)=0$. If $x \notin A$ then there exists m such that $x \in F_{1 / m}$, hence $f_{n}(x) \rightarrow f(x)$. Since $\mu(A)=0$ this means that $f_{n} \rightarrow f$ a.e..
15.2 It suffices to show the result for nonnegative functions in L^{p} (for an arbitrary function in L^{p} apply the result to its positive and negative parts). Let $f \geq 0$ be such function and let us first suppose that $1 \leq p<\infty$. By Proposition 5.14 in the textbook there is an increasing sequence of simple functions $\left\{s_{n}\right\}$ such that $\lim _{n \rightarrow \infty} s_{n}=f$. Clearly, the functions s_{n} are in L^{p} for all n (note that in general a simple function is not necessarily in L^{p}, for $\left.1 \leq p<\infty\right)$. Since
$s_{n} \leq f$ and $f \geq 0$ we have $\left|f-s_{n}\right|^{n} \leq|f|^{p}$ which is integrable since $f \in L^{p}$. By the dominated convergence theorem we have $\lim _{n \rightarrow \infty} \int\left|f-s_{n}\right|^{p} d \mu=0$ which proves the statement for $1 \leq p<\infty$. For $p=\infty$, note that each element of L^{∞} has a bounded representative so we can assume f to be bounded. By reviewing the proof of Proposition 5.14, it is easy to see that, if f is bounded, the convergence $s_{n} \rightarrow f$ is uniform (where $\left\{s_{n}\right\}$ are the simple function given by Proposition 5.14), that is $\forall M \geq 0, \exists n_{0}$ s.t. $\forall n>n_{0}\left|s_{n}-f\right|<M$. But this easily implies that $\left\|s_{n}-f\right\|_{\infty} \rightarrow 0$.
15.4 For $0<\varepsilon<\|f\|_{\infty}$ define $A_{\varepsilon}:=\left\{x \in[0,1]:|f(x)| \geq\|f\|_{\infty}-\varepsilon\right\}$. Then $\|f\|_{p}=$ $\left(\int_{[0,1]}|f|^{p} d m\right)^{1 / p} \geq\left(\int_{A_{\varepsilon}}|f|^{p} d m\right)^{1 / p} \geq\left(\int_{A_{\varepsilon}}\left(\|f\|_{\infty}-\varepsilon\right)^{p} d m\right)^{1 / p}=\left(\|f\|_{\infty}-\right.$ ع) $m\left(A_{\varepsilon}\right)^{1 / p}$ (of course, $m\left(A_{\varepsilon}\right)$ is finite). This implies

$$
\begin{equation*}
\liminf _{p \rightarrow \infty}\|f\|_{p} \geq\|f\|_{\infty} . \tag{0.1}
\end{equation*}
$$

Let $p>q$ and note that $|f| \leq\|f\|_{\infty}$ a.e.. Then, $\|f\|_{p}=\left(\int_{[0,1]}|f|^{p-q}|f|^{q} d m\right)^{1 / p} \leq$ $\|f\|_{\infty}^{\frac{p-q}{p}}\left(\int_{[0,1]}|f|^{q} d m\right)^{1 / p}=\|f\|_{\infty}^{\frac{p-q}{p}}\|f\|_{q}^{q / p}$, which implies

$$
\begin{equation*}
\limsup _{p \rightarrow \infty}\|f\|_{p} \leq\|f\|_{\infty} \tag{0.2}
\end{equation*}
$$

From (0.1) and (0.2) we get the statement.
15.6 We work in the real Lebesgue measure space. For the first case, let $f(x):=$ $x^{-1 / q} \chi_{(0,1)}$. Then $\|f\|_{q}=\left(\int\left|x^{-1 / q} \chi_{(0,1)}\right|^{q} d m\right)^{1 / q}=\left(\int_{(0,1)}(1 / x) d m\right)^{1 / q}=\infty$. But $\|f\|_{p}=\left(\int\left|x^{-1 / q} \chi_{(0,1)}\right|^{p} d m\right)^{1 / p}=\left(\int_{(0,1)}(1 / x)^{p / q} d m\right)^{1 / p}<\infty$, so $f \in L^{p}$ but $f \notin L^{q}$. For the second case, it is easy to verify (similarly) that $f(x):=$ $x^{-1 / p} \chi_{(1, \infty)}$ is an element of L^{q} but not one of L^{p}.
5. We prove directly (b) since (a) follows from (b) by setting $\alpha_{1}=\cdots=\alpha_{n}=1 / n$. Let $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ endowed with the σ-algebra of all subsets of X and the finite measure given by $\mu\left(x_{i}\right):=\alpha_{i}, i=1, \ldots, n$. Define $\varphi(t):=e^{t}$ and $f: X \rightarrow \mathbb{R}$ as $f\left(x_{i}\right):=\log \left(y_{i}\right), i=1, \ldots, n$ (note that, by hypothesis, we have $y_{i}>0$ for all i). By Jensen's inequality applied to the convex function φ and to f, we get

$$
\exp \left(\sum_{i=1}^{n} \alpha_{i} \log \left(y_{i}\right)\right) \leq \sum_{i=1}^{n} \alpha_{i} \exp \left(\log \left(y_{i}\right)\right)
$$

which leads to the desired inequality.
6. This is mostly the proof of Theorem 3.11 in Rudin's Real and Complex Analysis. First assume $1 \leq p<\infty$ and let $\left\{f_{n}\right\}$ be a Cauchy sequence in $L^{p}(\mu)$. There is a subsequence $\left\{f_{n_{i}}\right\}$ such that

$$
\begin{equation*}
\left\|f_{n_{i+1}}-f_{n_{i}}\right\|<1 / 2^{i} . \tag{0.3}
\end{equation*}
$$

Define $g_{k}:=\sum_{i=1}^{k}\left|f_{n_{i+1}}-f_{n_{i}}\right|$ and $g:=\sum_{i=1}^{\infty}\left|f_{n_{i+1}}-f_{n_{i}}\right| . \quad$ By (0.3) and Minkowski's inequality we get that $\left\|g_{k}\right\|_{p}<1$. By applying Fatou's lemma to $\left\{g_{k}^{p}\right\}$ we also get that $\|g\|_{p} \leq 1$. This means that $g<\infty$ a.e. and implies that the series

$$
f:=f_{n_{1}}+\sum_{i=1}^{\infty}\left(f_{n_{i+1}}-f_{n_{i}}\right)
$$

converges absolutely a.e.. Extend f by making it equal to 0 for all x for which the above series does not converge and notice that $f_{n_{k}}=f_{n_{1}}+\sum_{i=1}^{k-1}\left(f_{n_{i+1}}-f_{n_{i}}\right)$, hence $f_{n_{k}} \rightarrow f$ a.e. as $k \rightarrow \infty$. For $p=\infty$, let $A_{k}:=\left\{\left|f_{k}\right|>\left\|f_{k}\right\|_{\infty}\right\}, B_{m, n}:=$ $\left\{\left|f_{m}-f_{n}\right|>\left\|f_{m}-f_{n}\right\|_{\infty}\right\}$ and $E:=A_{k} \cup B_{m, n}$ for all $k, m, n \in \mathbb{Z}_{+}$. Then $\mu(E)=0$ and the sequence $\left\{f_{n}\right\}$ converges uniformly to a bounded function f on E^{c}. Then let $f=0$ on E.
7. The second inequality follows easily from the fact that $\sqrt{1+f^{2}} \leq 1+f$ (recall that $f \geq 0$) and that $\mu(X)=1$. For the first inequality notice that the function $x \mapsto \sqrt{1+x^{2}}$ is convex. By Jensen's inequality

$$
\sqrt{1+\left(\int_{X} f d \mu\right)^{2}} \leq \int_{X} \sqrt{1+f^{2}} d \mu
$$

which proves the statement.
8. Let m denote the Lebesgue measure on \mathbb{R}.
(a) For all $n \in \mathbb{Z}_{+}$define

$$
f_{n}(x):=\left\{\begin{array}{l}
1 / n, \text { if }-n^{2} \leq x \leq n^{2} \\
0, \text { otherwise }
\end{array}\right.
$$

Then, the functions f_{n} are simple and satisfy $\int f_{n} d m=(1 / n) m\left(\left[-n^{2}, n^{2}\right]\right)=$ $2 n^{2} / n=2 n \rightarrow \infty$ as $n \rightarrow \infty$. On the other hand, $\|f\|_{\infty}=1 / n$ and hence $\|f\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.
(b) The sequence of simple functions defined as

$$
g_{n}(x):=\left\{\begin{array}{l}
n, \text { if }-1 / n^{2} \leq x \leq 1 / n^{2}, \\
0, \text { otherwise }
\end{array}\right.
$$

for all $n \in \mathbb{Z}_{+}$, satisfies the requirements.
(c) Define the following sequence of continuous functions on $[0,1]$:

$$
h_{n}(x):=\left\{\begin{array}{l}
n^{2} x, \text { if } 0 \leq x \leq 1 / n \\
2 n-n^{2} x, \text { if } 1 / n<x \leq 2 / n \\
0, \text { otherwise }
\end{array}\right.
$$

Notice that, for all n, the graph of h_{n} consists in the two equal sides of an isosceles triangle of height n and with base $[0,2 / n]$, together with the segment $[2 / n, 1]\left(\right.$ where $\left.h_{n}=0\right)$. Then, $\int h_{n} d m=\int_{0}^{1 / n} n^{2} x d x+\int_{1 / n}^{2 / n}(2 n-$ $\left.n^{2} x\right) d x=1 / 2+2-2+1 / 2=1$. Also, $\left\|h_{n}\right\|_{\infty}=\max h_{n}=h_{n}(1 / n)=n$, so $\lim _{n \rightarrow \infty}\left\|h_{n}\right\|_{\infty}=\infty$. Lastly, for every $x \in[0,1]$ there exists $n_{x} \in \mathbb{Z}_{+}$ such that $h_{n}(x)=0$ for all $n>n_{x}$, which implies that $h_{n} \rightarrow 0$ pointwise, as $n \rightarrow \infty$.

