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10.1 Since {fn} is Cauchy in measure, there exists a subsequence {fnk
} such that

µ({x :
∣∣fnk+1

− fnk

∣∣ > 1/2k}) < 1/2k.

(just choose a = ε = 1/2k and apply the definition of being Cauchy in measure).
So, if we denote Ek := {x :

∣∣fnk+1
− fnk

∣∣ > 1/2k} we have µ(Ek) < 1/2k. Since
∪∞j=k+1Ej ⊂ ∪∞j=kEj, it follows that µ(∩∞k=1 ∪∞j=k Ej) = limk→∞ µ(∪∞j=kEj) ≤
limk→∞

∑∞
j=k 1/2j = limk→∞ 1/2k−1 = 0. Let E := ∩∞k=1 ∪∞j=k Ej. If x 6∈ E

there exists k s.t. x 6∈ ∪∞j=kEj, hence for all j, l ≥ k
∣∣fnj

(x)− fnl
(x)
∣∣ < 1/2k−1,

i.e. {fnk
(x)} is a Cauchy sequence. Then, for x 6∈ E, limj→∞ fnj

(x) exists.
Define

f(x) :=

{
limj→∞ fnj

(x), if x 6∈ E
0, if x ∈ E,

which is well defined and measurable (we leave this last statement to be proved
by the reader, as an exercise). It follows that fnj

→ f a.e. as j → ∞,
since µ(E) = 0. For a fixed j and x 6∈ ∪∞l=jEl we have, as we proved above,∣∣fnj

(x)− fnl
(x)
∣∣ ≤ 1/2j−1, ∀l ≥ j, hence

∣∣fnj
(x)− f(x)

∣∣ =
∣∣fnj

(x)− liml→∞ fnl
(x)
∣∣ =

liml→∞
∣∣fnj

(x)− fnl
(x)
∣∣ ≤ 1/2j−1. It follows that {x :

∣∣fnj
(x)− f(x)

∣∣ ≥
1/2j−1} ⊂ ∪∞l=jEl, hence µ({x :

∣∣fnj
(x)− f(x)

∣∣ ≥ 1/2j−1}) ≤ µ(∪∞l=jEl) ≤
1/2j−1 which converges to 0 as j →∞. This proves that the subsequence {fnj

}
converges to f in measure. Of course, we have |fn(x)− f(x) | ≤

∣∣fn(x)− fnj
(x)
∣∣+∣∣fnj

(x)− f(x)
∣∣, so if |fn(x)− f(x) | > a then

∣∣fn(x)− fnj
(x)
∣∣ ≥ a/2 or

∣∣fnj
(x)− f(x)

∣∣ ≥
a/2. This implies that {x : |fn(x)− f(x) | > a} ⊂ {x :

∣∣fn(x)− fnj
(x)
∣∣ ≥

a/2} ∪ {x :
∣∣fnj

(x)− f(x)
∣∣ ≥ a/2}. Applying the facts that {fn} is Cauchy in

measure and fnj
converges in measure to f , the sets on the right hand side have

arbitrarily small measure (for j, n large enough), which proves the statement.

10.2 The symmetry and nonnegativity of d are obvious. Also, d(f, g) = 0 implies∫
|f − g | /(1 + |f − g |)dµ = 0, hence |f − g | = 0 a.e. Lastly, for the triangle

inequality evaluate the expression D := d(f, h)+d(h, g)−d(f, g). After elemen-
tary calculations, we find that D has positive denominator and its numerator
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is given by |f − h|+ |h− g | − |f − g |+ |f − h| |h− g |+ |h− g | |f − h| which
is nonnegative (apply the triangle inequality to the first three terms). Sup-
pose now that fn → f in measure. The function t 7→ t/(1 + t) is increasing

so, for all ε > 0, d(fn, f) =

∫
X

|fn − f |
1 + |fn − f |

dµ =

∫
|fn−f |<ε

|fn − f |
1 + |fn − f |

dµ +∫
|fn−f |≥ε

|fn − f |
1 + |fn − f |

dµ ≤ εµ(X) + µ(|fn − f | ≥ ε), where the last term con-

verges to 0 as n → ∞, because of the convergence in measure of fn. It follows
that limn→∞ d(fn, f) ≤ εµ(X) for all ε > 0, which implies limn→∞ d(fn, f) = 0

since µ(X) < ∞. For the converse, fix ε > 0. Then
ε

1 + ε
µ({|fn − f | ≥ ε}) =

ε

1 + ε

∫
{|fn−f |≥ε}

dµ ≤
∫
{|fn−f |≥ε}

|fn − f |
1 + |fn − f |

dµ ≤
∫
X

|fn − f |
1 + |fn − f |

dµ → 0,

where we used that on {|fn − f | ≥ ε} we have
|fn − f |

1 + |fn − f |
≥ ε

1 + ε
.

10.3 Let {fnk
} be a subsequence of {fn} such that

∫
fnk
→ lim infn→∞

∫
fn (such

subsequence always exists by the definition of lim inf of a sequence of num-
bers). As a subsequence of a sequence converging in measure to f , {fnk

}
converges in measure to f . Hence, there exists a subsequence {gn} of {fnk

}
(which we denoted as gn to avoid the proliferation of indices) that converges
to f a.e. Also,

∫
gn → lim infn→∞

∫
fn (as a subsequence of {fnk

}). So,∫
f =

∫
lim
n→∞

gn =

∫
lim inf
n→∞

gn ≤ lim inf
n→∞

∫
gn = lim

n→∞

∫
gn = lim inf

n→∞

∫
fn

which proves the statement.

10.4 Denote by fn := χAn for all n and let {gn} be a subsequence of {fn} such
that gn → f a.e.. Every function gn satisfies gn(X) ⊂ {0, 1}, where X is the
underlining set of the measure space. Then, f(X) ⊂ {0, 1} a.e. since gn → f
a.e.. Let E := {x ∈ X : limn→∞ gn(x) = f(x)}. Then, A := E ∩ {f = 1} =
∪n ∩m≥n {gm = 1} is measurable and f = χA a.e..

10.5 For every ε > 0 let Fε be the measurable set on which fn converges to f
uniformly and µ(F c

ε ) < ε. Define A := ∩mF c
1/m, for m ∈ Z+, which is clearly

measurable. Then µ(A) ≤ µ(F c
1/m) ≤ 1/m for all m, hence µ(A) = 0. If x 6∈ A

then there exists m such that x ∈ F1/m, hence fn(x) → f(x). Since µ(A) = 0
this means that fn → f a.e..

15.2 It suffices to show the result for nonnegative functions in Lp (for an arbitrary
function in Lp apply the result to its positive and negative parts). Let f ≥ 0
be such function and let us first suppose that 1 ≤ p <∞. By Proposition 5.14
in the textbook there is an increasing sequence of simple functions {sn} such
that limn→∞ sn = f . Clearly, the functions sn are in Lp for all n (note that
in general a simple function is not necessarily in Lp, for 1 ≤ p < ∞). Since
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sn ≤ f and f ≥ 0 we have |f − sn |n ≤ |f |p which is integrable since f ∈ Lp. By
the dominated convergence theorem we have limn→∞

∫
|f − sn |p dµ = 0 which

proves the statement for 1 ≤ p < ∞. For p = ∞, note that each element
of L∞ has a bounded representative so we can assume f to be bounded. By
reviewing the proof of Proposition 5.14, it is easy to see that, if f is bounded,
the convergence sn → f is uniform (where {sn} are the simple function given
by Proposition 5.14), that is ∀M ≥ 0,∃n0 s.t. ∀n > n0 |sn − f | < M . But this
easily implies that ‖sn − f ‖∞ → 0.

15.4 For 0 < ε < ‖f ‖∞ define Aε := {x ∈ [0, 1] : |f(x) | ≥ ‖f ‖∞− ε}. Then ‖f ‖p =
(
∫
[0,1]
|f |p dm)1/p ≥ (

∫
Aε
|f |p dm)1/p ≥ (

∫
Aε

(‖f ‖∞ − ε)pdm)1/p = (‖f ‖∞ −
ε)m(Aε)

1/p (of course, m(Aε) is finite). This implies

lim inf
p→∞

‖f ‖p ≥ ‖f ‖∞. (0.1)

Let p > q and note that |f | ≤ ‖f ‖∞ a.e.. Then, ‖f ‖p = (
∫
[0,1]
|f |p−q |f |q dm)1/p ≤

‖f ‖
p−q
p
∞ (

∫
[0,1]
|f |q dm)1/p = ‖f ‖

p−q
p
∞ ‖f ‖q/pq , which implies

lim sup
p→∞

‖f ‖p ≤ ‖f ‖∞. (0.2)

From (0.1) and (0.2) we get the statement.

15.6 We work in the real Lebesgue measure space. For the first case, let f(x) :=
x−1/qχ(0,1). Then ‖f ‖q = (

∫ ∣∣x−1/qχ(0,1)

∣∣q dm)1/q = (
∫
(0,1)

(1/x) dm)1/q = ∞.

But ‖f ‖p = (
∫ ∣∣x−1/qχ(0,1)

∣∣p dm)1/p = (
∫
(0,1)

(1/x)p/q dm)1/p < ∞, so f ∈ Lp

but f 6∈ Lq. For the second case, it is easy to verify (similarly) thatf(x) :=
x−1/pχ(1,∞) is an element of Lq but not one of Lp.

5. We prove directly (b) since (a) follows from (b) by setting α1 = · · · = αn = 1/n.
Let X := {x1, . . . , xn} endowed with the σ-algebra of all subsets of X and
the finite measure given by µ(xi) := αi, i = 1, . . . , n. Define ϕ(t) := et and
f : X → R as f(xi) := log(yi), i = 1, . . . , n (note that, by hypothesis, we have
yi > 0 for all i). By Jensen’s inequality applied to the convex function ϕ and
to f , we get

exp

(
n∑

i=1

αi log(yi)

)
≤

n∑
i=1

αi exp(log(yi))

which leads to the desired inequality.

6. This is mostly the proof of Theorem 3.11 in Rudin’s Real and Complex Analysis.
First assume 1 ≤ p <∞ and let {fn} be a Cauchy sequence in Lp(µ). There is
a subsequence {fni

} such that

‖fni+1
− fni

‖ < 1/2i. (0.3)

3



Define gk :=
∑k

i=1

∣∣fni+1
− fni

∣∣ and g :=
∑∞

i=1

∣∣fni+1
− fni

∣∣. By (0.3) and
Minkowski’s inequality we get that ‖gk‖p < 1. By applying Fatou’s lemma to
{gpk} we also get that ‖g‖p ≤ 1. This means that g <∞ a.e. and implies that
the series

f := fn1 +
∞∑
i=1

(fni+1
− fni

)

converges absolutely a.e.. Extend f by making it equal to 0 for all x for which
the above series does not converge and notice that fnk

= fn1 +
∑k−1

i=1 (fni+1
−fni

),
hence fnk

→ f a.e. as k →∞. For p =∞, let Ak := {|fk | > ‖fk‖∞}, Bm,n :=
{|fm − fn | > ‖fm − fn‖∞} and E := Ak ∪ Bm,n for all k,m, n ∈ Z+. Then
µ(E) = 0 and the sequence {fn} converges uniformly to a bounded function f
on Ec. Then let f = 0 on E.

7. The second inequality follows easily from the fact that
√

1 + f 2 ≤ 1 + f (recall
that f ≥ 0) and that µ(X) = 1. For the first inequality notice that the function
x 7→

√
1 + x2 is convex. By Jensen’s inequality√

1 +

(∫
X

f dµ

)2

≤
∫
X

√
1 + f 2 dµ

which proves the statement.

8. Let m denote the Lebesgue measure on R.

(a) For all n ∈ Z+ define

fn(x) :=

{
1/n, if − n2 ≤ x ≤ n2,

0, otherwise.

Then, the functions fn are simple and satisfy
∫
fndm = (1/n)m([−n2, n2]) =

2n2/n = 2n → ∞ as n → ∞. On the other hand, ‖f ‖∞ = 1/n and hence
‖f ‖∞ → 0 as n→∞.

(b) The sequence of simple functions defined as

gn(x) :=

{
n, if − 1/n2 ≤ x ≤ 1/n2,

0, otherwise,

for all n ∈ Z+, satisfies the requirements.

(c) Define the following sequence of continuous functions on [0, 1]:

hn(x) :=


n2x, if 0 ≤ x ≤ 1/n,

2n− n2x, if 1/n < x ≤ 2/n,

0, otherwise.
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Notice that, for all n, the graph of hn consists in the two equal sides of
an isosceles triangle of height n and with base [0, 2/n], together with the

segment [2/n, 1] (where hn = 0). Then,
∫
hndm =

∫ 1/n

0
n2xdx +

∫ 2/n

1/n
(2n−

n2x)dx = 1/2 + 2 − 2 + 1/2 = 1. Also, ‖hn‖∞ = maxhn = hn(1/n) = n,
so limn→∞ ‖hn‖∞ = ∞. Lastly, for every x ∈ [0, 1] there exists nx ∈ Z+

such that hn(x) = 0 for all n > nx, which implies that hn → 0 pointwise,
as n→∞.
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