## Problem Set 6

due: June 23

1. Recommended practice problems from Sections 4.7, 4.9, 5.1-5.3, Chapter 4 Review, and Appendix E .
2. Evaluate the following sums:
(a) $\sum_{k=1}^{m}\left(\sum_{l=1}^{n} \frac{k}{l(l+1)}\right)$
(a) $\sum_{k=1}^{n}\left(\frac{2017}{\sum_{l=1}^{k} l}\right)$.
3. Find the limit:

$$
\lim _{n \rightarrow \infty}\left(\sqrt{\left(\sum_{i=1}^{n} i\right)}-\frac{n \sqrt{2}}{2}\right)
$$

4. Let $f$ be a function defined (piecewise) on the interval $[1,2017$ ) by the formula

$$
f(x)=\frac{2}{k(k+2)}, \quad \text { for } x \in[k, k+1), \text { where } k=1, \ldots, 2016
$$

Find the area of the region bounded by the graph of $f$, the $x$-axis and the lines $x=1$ and $x=2017$.

Bonus. (a) Let $f$ be any linear function on a closed interval $[a, b]$ (i.e., a function of the form $f(x)=$ $A x+B$ for some $A, B \in \mathbb{R})$. Show that

$$
\int_{a}^{b} f(x) \mathrm{d} x=(b-a) \cdot f\left(\frac{a+b}{2}\right)
$$

(b) Let $g$ be a function twice differentiable on a closed interval $[a, b]$. Prove that if $g$ is concave up then

$$
\int_{a}^{b} g(x) \mathrm{d} x \leq(b-a) \cdot \frac{g(a)+g(b)}{2}
$$

