Problem Set 3

due: June 2

1. Recommended practice problems from Sections 2.3, 2.5, 2.6 and 2.7.
2. Use the Squeeze Theorem to find the following limits. Justify your answers.
(a) $\lim _{x \rightarrow 1^{-}} \sqrt{1-x^{2}} \cdot \sin ^{5}\left(\ln \left(1-x^{2}\right)\right)$;
(b) $\lim _{x \rightarrow \infty} \sin \left(\frac{\pi}{x}\right) \cdot e^{\cos (\pi x)}$;
(c) $\lim _{x \rightarrow \infty} \sqrt{x} \cdot \sin \left(\frac{1}{x}\right)$.
3. Find $\lim _{x \rightarrow 0} \frac{\sin (\sin (\sin x))}{x}$. Justify your answer.
4. Use the Intermediate Value Theorem to show that the following equations have a solution in a given interval I. Justify your answers.
(a) $x^{5}-4 x^{2}+e^{x}=0, \quad I=(-1,1)$;
(b) $e^{\sin x}-\sin (\cos x)=1, \quad I=\left(0, \frac{3 \pi}{2}\right)$.
[Hint: Consider the restriction to a suitable subinterval of I.]
Bonus. Use the definition of derivative to prove that, if functions f and g are differentiable at a point a, then so are $f \cdot g$ and f / g (provided $g(a) \neq 0$), and their derivatives at a are given by the formulas:

$$
(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a) \quad \text { and } \quad\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{[g(a)]^{2}}
$$

