ON THE CYCLE STRUCTURE OF HAMILTONIAN k-REGULAR BIPARTITE GRAPHS OF ORDER $4 k$

JANUSZ ADAMUS

Abstract

It is shown that a hamiltonian $n / 2$-regular bipartite graph G of order $2 n>8$ contains a cycle of length $2 n-2$. Moreover, if such a cycle can be chosen to omit a pair of adjacent vertices, then G is bipancyclic.

In [2], Entringer and Schmeichel gave a sufficient condition for a hamiltonian bipartite graph to be bipancyclic.

Theorem 1. A hamiltonian bipartite graph G of order $2 n$ and size $\|G\|>n^{2} / 2$ is bipancyclic (that is, contains cycles of all even lengths up to $2 n$).

Interestingly enough, a non-hamiltonian graph with this same bound on the size may contain no long cycles whatsoever. Consider for instance, for n even, a graph obtained from the disjoint union of $H_{1}=K_{n / 2, n / 2}$ and $H_{2}=K_{n / 2, n / 2}$ by joining a single vertex of H_{1} with a vertex of H_{2}.

In the present note, we are interested in the cycle structure of a hamiltonian bipartite graph of order $2 n$, whose every vertex is of degree $n / 2$. One immediately verifies that the size of such a graph is precisely $n^{2} / 2$, so the above theorem does not apply. Instead, we prove the following result.

Theorem 2. If G is a hamiltonian n/2-regular bipartite graph of order $2 n>8$, then G contains a cycle C of length $2 n-2$. Moreover, if C can be chosen to omit a pair of adjacent vertices, then G is bipancyclic.

Our motivation for presenting Theorem 2 is that, although concerning a narrow class of graphs, it plays an important role in the general study of long cycles in balanced bipartite graphs [1]. We find it also quite amusing that the proof below relies entirely on the combinatorics of the adjacency matrix.

It should be noted that Tian and Zang [3] proved that a hamiltonian bipartite graph of order $2 n \geq 120$ and minimal degree greater than $\frac{2 n}{5}+2$ is necessarily bipancyclic. This result leaves open the case of $|G|=n<60$, in which the above theorem seems to be best to date.

Proof. Suppose to the contrary that there is a hamiltonian $n / 2$-regular bipartite graph G on $2 n$ vertices $(n \geq 5)$, without a cycle of length $2 n-2$. Let $X=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ be the colour classes of G, and let H be a Hamilton cycle in G; say, $H=x_{1} y_{1} x_{2} y_{2} \ldots x_{n} y_{n} x_{1}$. Let $E=E(G)$ be the edge set of G. The requirement that G contain no $C_{2 n-2}$ implies that, for every $i=1, \ldots, n$,

$$
\begin{equation*}
x_{i} y_{i-2} \notin E, \quad x_{i} y_{i+1} \notin E, \quad \text { and } \tag{1}
\end{equation*}
$$

[^0](2) if $x_{i} y_{j} \in E$ for some $j \in\{i+2, \ldots, n+i-3\}$, then $x_{i+1} y_{j+1} \notin E$.
(All indices are understood modulo n.)
Consider the $n \times n$ adjacency matrix $A_{G}=\left[a_{j}^{i}\right]_{1 \leq i, j \leq n}$, where $a_{j}^{i}=1$ if $x_{i} y_{j} \in E$, and $a_{j}^{i}=-1$ otherwise. Notice that, from adjacency on H and by (1),
\[

$$
\begin{equation*}
a_{i-1}^{i}=a_{i}^{i}=1 \quad \text { and } \quad a_{i-2}^{i}=a_{i+1}^{i}=-1 \quad \text { for all } i, \tag{3}
\end{equation*}
$$

\]

and by (2),

$$
\begin{equation*}
a_{j}^{i}=1 \Rightarrow a_{j+1}^{i+1}=-1 \quad \text { for } i=1, \ldots, n, j=i+2, \ldots, i-3 \tag{4}
\end{equation*}
$$

As every x_{i} has precisely $n / 2$ neighbours, the entries of each row of A_{G} sum up to 0 ; i.e., $\sum_{j=1}^{n} a_{j}^{i}=0$. Therefore, by (4), we also have

$$
\begin{equation*}
a_{j}^{i}=-1 \Rightarrow a_{j+1}^{i+1}=1 \quad \text { for } i=1, \ldots, n, j=i+2, \ldots, i-3 \tag{5}
\end{equation*}
$$

The properties (3), (4) and (5) imply that A_{G} (and hence G itself) is uniquely determined by the entries $a_{3}^{1}, \ldots, a_{n-2}^{1}$, and more importantly, that the sum of entries of the first column of A_{G} equals

$$
\begin{aligned}
a_{1}^{1}+a_{n}^{1}+a_{n-1}^{1}-a_{n-2}^{1}+a_{n-3}^{1}-a_{n-4}^{1}+\cdots- & a_{4}^{1}+a_{3}^{1}+a_{2}^{1} \\
& =a_{3}^{1}-a_{4}^{1}+\cdots+a_{n-3}^{1}-a_{n-2}^{1}
\end{aligned}
$$

given that $a_{1}^{1}+a_{2}^{1}+a_{n-1}^{1}+a_{n}^{1}=0$.
On the other hand, every column sums up to 0 , as each y_{j} has precisely $n / 2$ neighbours. Hence $\sum_{j=3}^{n-2} a_{j}^{1}=0$ and $\sum_{j=3}^{n-2}(-1)^{j+1} a_{j}^{1}=0$, and thus $n-4=4 l$ for some $l \geq 1$, and $\sum_{k=1}^{2 l} a_{2 k+1}^{1}=\sum_{k=1}^{2 l} a_{2 k+2}^{1}=0$. In general, for any $1 \leq i_{0} \leq n$,

$$
\begin{equation*}
a_{i_{0}+2}^{i_{0}}+a_{i_{0}+4}^{i_{0}}+\cdots+a_{i_{0}+n-4}^{i_{0}}=a_{i_{0}+3}^{i_{0}}+a_{i_{0}+5}^{i_{0}}+\cdots+a_{i_{0}+n-3}^{i_{0}}=0 . \tag{6}
\end{equation*}
$$

Let now $1 \leq i_{0} \leq n$ be such that $a_{i_{0}+2}^{i_{0}}=-1$. In fact, we can choose $i_{0}=1$ or $i_{0}=2$, for if $a_{3}^{1}=1$, then $a_{4}^{2}=-1$, by (4). We will show that there exists a $k \in\{3, \ldots, n-3\}$ such that

$$
a_{i_{0}+k}^{i_{0}}=a_{i_{0}}^{i_{0}+k}=1 .
$$

Suppose otherwise; i.e., suppose that, for all $3 \leq k \leq n-3, a_{i_{0}+k}^{i_{0}}+a_{i_{0}}^{i_{0}+k} \in\{0,-2\}$. Notice that, by (4) and (5), $a_{i_{0}}^{i_{0}+k}=(-1)^{k} a_{i_{0}-k}^{i_{0}}$ for $k=3, \ldots, n-3$. Hence, in particular, $a_{i_{0}+4}^{i_{0}}+a_{i_{0}+n-4}^{i_{0}}, a_{i_{0}+6}^{i_{0}}+a_{i_{0}+n-6}^{i_{0}}, \ldots, a_{i_{0}+2 l+2}^{i_{0}}+a_{i_{0}+2 l+2}^{i_{0}}$ are all nonpositive. In light of (6), this is only possible when $a_{i_{0}+2}^{i_{0}}=1$, which contradicts our choice of i_{0}.

To sum up, we have found i_{0} and $k \in\{3, \ldots, n-3\}$ with the property that $a_{i_{0}+1}^{i_{0}-1}=a_{i_{0}+k}^{i_{0}}=a_{i_{0}}^{i_{0}+k}=1$, which is to say that

$$
x_{i_{0}-1} y_{i_{0}+1} \in E, x_{i_{0}} y_{i_{0}+k} \in E, \text { and } x_{i_{0}+k} y_{i_{0}} \in E
$$

Hence a cycle

$$
C=x_{i_{0}-1} y_{i_{0}+1} x_{i_{0}+2} \ldots y_{i_{0}+k-1} x_{i_{0}+k} y_{i_{0}} x_{i_{0}} y_{i_{0}+k} x_{i_{0}+k+1} \ldots y_{i_{0}-2} x_{i_{0}-1}
$$

of length $2 n-2$ in G; a contradiction.
For the proof of the second assertion of the theorem, suppose that C can be chosen so that the omitted vertices x^{\prime} and y^{\prime} are adjacent in G. Let $G^{\prime}=G-\left\{x^{\prime}, y^{\prime}\right\}$
be the induced subgraph of G spanned by the vertices of C. Then G^{\prime} is hamiltonian of order $2(n-1)$ and size

$$
\left\|G^{\prime}\right\|=\|G\|-\left(d_{G}\left(x^{\prime}\right)+d_{G}\left(y^{\prime}\right)-1\right)=n^{2} / 2-n+1
$$

which is greater than $(n-1)^{2} / 2$. Thus G^{\prime}, and hence G itself, is bipancyclic, by Theorem 1

References

1. J. Adamus and L. Adamus, Ore and Erdős type conditions for long cycles in balanced bipartite graphs, Discrete Math. Theor. Comput. Sci. 11:2 (2009), 57-70.
2. R.C. Entringer and E.F. Schmeichel, Edge conditions and cycle structure in bipartite graphs, Ars Combinatoria 26 (1988), 229-232.
3. F. Tian and W.A. Zang, Bipancyclism in Hamiltonian bipartite graphs, Systems Sci. Math. Sci. 2 (1989), no. 1, 22-31.

Department of Mathematics, The University of Western Ontario, London, Ontario,
N6A 5B7 Canada and Institute of Mathematics, Jagiellonian University, Kraków, Poland E-mail address: jadamus@uwo.ca

[^0]: Key words and phrases. regular graph, bipartite graph, Hamilton cycle, long cycle, bipancyclicity, combinatorial problems MSC 2000: 05C38, 05C35, 05A05.

