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Abstract We prove a conjecture of Kurdyka stating that every arc-symmetric semi-
algebraic set is precisely the zero locus of an arc-analytic semialgebraic function.
This implies, in particular, that arc-symmetric semialgebraic sets are in one-to-one
correspondence with radical ideals of the ring of arc-analytic semialgebraic functions.
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1 Introduction

A set X in R” is called semialgebraic if it can be written as a finite union of sets
of the form {x € R" : p(x) = 0,q1(x) > 0,...,g,(x) > 0}, where r € N and
P,q1s---,qr € Rlxy, ..., x,]. Given X C R", a semialgebraic function f : X — R
is one whose graph is a semialgebraic subset of R"*!. A function f : X — R is
called arc-analytic if it is analytic along every arc, that is, if f oy is analytic for every
real-analytic y : (—1,1) = X.

Let X be a semialgebraic subset of R”. We say that X is arc-symmetric if, for every
analytic arc y : (—1,1) — R” with y((—1,0)) C X, we have y((—1,1)) C X.
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Our main result is the following affirmative answer to a conjecture of Kurdyka [11,
Conj.6.3]:

Theorem 1 Let X be an arc-symmetric semialgebraic set in R". There exists an arc-
analytic semialgebraic function f : R" — R such that X = f~1(0).

The elegant theory of arc-symmetric semialgebraic sets was developed by Kurdyka
[11]. It is based on a fundamental observation ([11, Thm. 1.4]) that the arc-symmetric
semialgebraic sets are precisely the closed sets of a certain noetherian topology on R”.
(A topology is called noetherian when every descending sequence of its closed sets is
stationary.) Following [11], we will call it the @ZZ% topology, and the arc-symmetric
semialgebraic sets will henceforth be called .27 %Z-closed sets.

Noetherianity of the 7% topology allows one to make sense of the notions of
irreducibility and components of a semialgebraic set much like in the algebraic case
(see Sect. 2 for details). The class of .&/Z%-closed sets includes, in particular, the
algebraic sets as well as the Nash analytic sets (in the sense of [3]). The &Z% topology
is strictly finer than the Zariski topology on R” (see, e.g., [11, Ex. 1.2]). Moreover,
it follows from the semialgebraic Curve Selection Lemma that .&7%-closed sets are
closed in the Euclidean topology in R” (see [11, Rem. 1.3]).

Remark 1 Tt is interesting to compare the 7% topology with other noetherian refine-
ments of Zariski topology, in which closed sets are defined as the zero loci of functions
more general than polynomials, such as Nash functions or continuous rational func-
tions. Continuous rational (a.k.a. regulous over R") functions have recently attracted
attention of numerous authors (see, e.g., [6,8—10]). The refinement arising from Nash
functions was studied in [5]. It turns out that the </% topology is strictly finer than
both Nash and regulous topologies, which incidentally are incomparable. This topic
is studied in detail in a subsequent paper by the second author.

Given an @#%-closed set X in R", we denote by .o7,(X) the ring of arc-analytic
semialgebraic functions on X. The elements of <7, (X) play the role of ‘regular func-
tions’ in 7% geometry. Indeed, it is not difficult to see ([11, Thm. 5.1]) that the graph
as well as the zero locus of every arc-analytic semialgebraic mapping f : X — R™
are @/%-closed as well. On the other hand, up until now it was not known whether
every /% -closed set may be realized as the zero locus of an arc-analytic function.
Our Theorem 1 fills this gap in the theory. It shows that &/% topology is in fact the
one defined by arc-analytic semialgebraic functions, which is not at all apparent from
its definition.

In the next section, we recall basic notions and tools used in this article. Theorem 1
is proved in Sect. 3. In Sect. 4, we prove an #/% version of the duality between
closed sets and radical ideals, which is an easy consequence of Theorem 1. The last
section contains some initial results concerning extension of arc-analytic functions.
We conjecture that <7, (X) >~ 7, (R")/Z(X) for every «@Z%-closed set X in R”".

2 Preliminaries

First, we shall recall several properties of .«7%-closed sets that will be used throughout
the paper. For details and proofs we refer the reader to [11].
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A proof of Kurdyka’s conjecture on arc-analytic functions

An /% -closed set X is called 7% -irreducible if it cannot be written as a union of
two proper 7% -closed subsets. It follows from noetherianity of the &Z% topology ([11,
Prop. 2.2]) that every .«#%-closed set admits a unique decomposition X = X;U- - -UX,
into @/%-irreducible sets satisfying X; ¢ Uj#i Xjforeachi =1,...,r. The sets
X1, ..., X, are called the &/%-components of X.

. . . —7Z: o .
For a semialgebraic set £ in R”, let E ™ denote the Zariski closure of E , that is,

the smallest real-algebraic subset of R” containing E. Similarly, let FM% denote the
A% -closure of E in R”. Consider the following three kinds of dimension of E:

— the geometric dimension dimgE, defined as the maximum dimension of a real-
analytic submanifold of (an open subset of) R” contained in E,

— the algebraic dimension dim, E, defined as dim Fzm,
— the &/% topological (or Krull) dimension dimg E, defined as the maximum length /

. —Y . .
ofachainXg C X; C---C X, CE Z, where Xy, ..., X; are /% -irreducible.

It is well known that dimg £ = dim, E (see, e.g., [3, Sec.2.8]). By [11, Prop.2.11],
we also have dim, £ = dimg E. We shall denote this common dimension simply as
dim E. By convention, dim & = —1.

An essential tool in our proofs is the blowing-up of R” at a Nash subset. Recall that
a subset Z of a semialgebraic open U C R" is called Nash if it is the zero locus of
a Nash function f : U — R. A function f : U — R is called a Nash function if it
is an analytic algebraic function on U, that is, a real-analytic function such that there
exists a non-zero polynomial P € R[x, ] with P(x, f(x)) = 0, forevery x € U. We
denote the ring of all Nash functions on U by A/ (U). We refer the reader to [3, Ch. 8]
for details on Nash sets and mappings.

Let Z be a Nash subset of R”. Consider the ideal Z(Z) in N (R") of all Nash func-
tions on R” vanishing on Z. By noetherianity of N'(R") (see, e.g., [3, Thm. 8.7.18]),
there are f1, ..., f, € N(R") such that Z(Z) = (fi, ..., fr). Set

Ri={(x,[u1,...,u,]) € R" x P~V iu; f(x) = uj fix) foralli,j=1,...,r}.

The restriction o : R — R" to R of the canonical projection R x P'~1 — R”"
is the blowing-up of R" at (the centre) Z. One can verify that R is independent of
the choice of generators fi, ..., f of Z(Z). Since a real projective space is an affine
algebraic set (see, e.g., [3, Thm.3.4.4]), one can assume that R is a Nash subset of
RY for some N € N. If X is a Nash subset of R”, then the smallest Nash subset X
of R containing o~ (X\ Z) is called the strict transform of X (by o). In this case, if
Z C X, then we may also call X the blowing-up of X at Z.

For a semialgebraic set E and a natural number d, we denote by Reg, (E) the locus
of those points x € E at which E is a germ of a d-dimensional analytic manifold.
If dim E = k, we set Sing(E) := E\Reg, (E). Then, Sing(E) is semialgebraic and
dim Sing(E) < dim E.

Finally, recall that every algebraic set X in R" admits an embedded desingulariza-
tion. That is, there exists a proper mapping 7 : R — R” which is the composition
of a finite sequence of blowings-up with smooth algebraic centres, such that 7 is an
isomorphism outside the preimage of the singular locus Sing(X) of X, the strict trans-
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form X of X is smooth, and X and 7! (Sing(X)) simultaneously have only normal
crossings. (The latter means that every point of R admits a (local analytic) coordi-
nate neighbourhood in which X is a coordinate subspace and each hypersurface H of
771 (Sing(X)) is a coordinate hypersurface.) For details on resolution of singularities
we refer the reader to [2] or [7].

3 Proof of the main theorem

In [11, Thm. 6.2], Kurdyka showed that, given an «#Z%-closed set X in R”, there exists
f € o,(R") such that X ¢ f~'(0) and dim(f~!(0)\X) < dim X. Our proof of
Theorem 1 follows the general idea of the above in that we lift the problem to a
desingularization of the Zariski closure of X. We later lift it once more by a single
blowing-up, to control the excess of zeros of f.

Proof of Theorem 1

Let X be an &7%-closed set in R”. We argue by induction on dimension of X.

If dim X < 0, then X is just a finite set and hence the zero locus of a polynomial
function. Suppose then that dim X = k > 0, and every &/%-closed set of dimension
smaller than k is the zero locus of an arc-analytic semialgebraic function on R”. We
may also assume that X is o7Z-irreducible.

Let Y be the singular locus of X Letr : R — R” beanembedded desingulariza-

tion of Yzar, and let X be the strict transform of Yzar. Then, 7 is an isomorphism outside
the preimage of Y. Since X NY is an &@Z%-closed set of dimension smaller than k, the
inductive hypothesis implies that there exists 4 € 7, (R") suchthat XNY = h1 0).

By [11, Thm.2.6], there exists a connected component E of X , such that the
Euclidean closure e Reg; (X) is equal to 7 (E). Further, let D := 7~ YY) and Z :=
END.Leto : R — R be the blowing-up of R at Z. As discussed in Sect. 2, we
can assume that R C RY for some N € N. Let E and D be the strict transforms of
E and D by o, respectively. Since E and D have only normal crossings, E and D are
disjoint subsets of R.

By the semialgebraic Tietze-Urysohn Theorem ([3, Prop.2.6.9]), disjoint closed
semialgebraic subsets can be separated by open semialgebraic sets. Let then Uy and Uz
be open semialgebraic subsets of RN such that E C Ui, DcC Uy,and U NU, =
Define a Nash function g : Uy U U, — R as

(Z)'_ O, Z€U1
=1 Leu,.

By the Efroymson extension theorem (see [4] or [3, Thm.8.9.12]), the function ¢
admits a Nash extension to the whole RN that is, there exists g € N(RN) such that
8lgup = 4qlpup- Moreover, the set E U D being closed Nash in RV, there exists
v € N(RY) such that E U D = v=1(0). Now, define

f:: (g.(hon oa))2+v2.
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Observe that f is an arc-analytic function defined on RY (hence, in particular, on R)
f (homoo)?on D, f =0on E, and f never vanishes outside of E U D

Next, we push down f by o in order to get an arc-analytic function on R. More
precisely, we define f: R — Ras

(foo™)-(hom)(y), y¢Z

Fy) = 0. vez.

To see that fis arc-analytic, lety : (0, 1) — R be an analytic arcandlety : (0, 1) —
R be its lifting by o. Then, 0 o ¥ = y. We claim that

foV=(fop)-(homo?D), (1)

which implies that f o ¥ is analytic. Indeed, if 7(t) ¢ Z, then (1) holds because
(Foo o)) = (foo oo o)(t) = (f o)) If, in turn, 7 (1) € Z, then
(h o o¥)(r) =0, by definition of &, and hence both sides of (1) are equal to zero.

Now, we push down fby 7 in order to get an arc analytic function on R”. More
precisely, we define f : R” — R as

) (Forh), xevy
Joo = {h3(x), xeY.

To see that f is arc-analytic,lety : (0, 1) —>/I\R" be an analytic arc. Lety : (0, 1) — R
be the lifting of y by r,andlety : (0, 1) — R betheliftingof ¥ by 0. Then, oy = v,
and 0 o ¥ = Y. We claim that

~

foy=foVy, )

which 1mphes that f oy is analytlc Indeed, if y(z) ¢ Y, then (2) holds because

(fon oy)(t) = (fon omoP)(t) = (foy)(t) If, in turn, y(t) eYNn(E),
then h(y (¢)) = 0 and hence (f o y)(¢) = 0. But y(¢) € Z, and hence (f o)) =0
as well. Finally, if y () € Y\x(E), then ¥(¢) ¢ Z and y(¢) € D; hence, by (1), we
have

(FoP)®) = ((Fo7)-(homo N = (((homoo)? o) - (hox o)) )

=(homopP-thom o)) ()= (homo7)}W) = (hoyy ()
=(fon)®).

We shall now calculate the zero locus of f.

FHO=x eRN\Y: (for Hx)=0U{x €Y : h*(x) =0}
=x({yeR\D: f(®)=0}))uxny)
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= ({y eR\D: (Foo ™) (hom)(y) = o}) UXNY)
- ({y eR\D: (Foo H)(y) = 0}) UXNY)
= (roo)ze R ™ (): fy =0p)uxny)

=@oo)E\oc H(DHUKXNY)
=7(E\D)U(XNY)
= (Reg, (X)\Y)U (X NY).

It follows that the .27%-closed set f~1(0) is contained in X and contains the .«/.%-

closure Reg; (X )”QM. By @/Z-irreducibility of X however, the set Reg; (X) is Z/%-
dense in X. We thus get f~!(0) = X, which completes the proof. O

4 Algebro-geometric duality

Theorem 1 allows one to establish a direct dictionary between the «7%-closed sets
and the radical ideals in the ring of arc-analytic semialgebraic functions, analogous to
the case of Zariski topology over an algebraically closed field.

Let X and Y be @/%-closed sets in R”, with Y C X. We will denote by Zy (Y) the
ideal in 27, (X) of the functions that vanish on Y. If X = R", we will write Z(Y) for
Zx(Y). For an ideal I in 7,(X), we will denote by Vx (/) the set of points x € X
at which all f € I vanish. Further, radx (/) will denote the radical of I in <7, (X). If
X = R", we shall write V(1) for Vx(I), and rad(/) for radx ().

Proposition 1 Let X be an o/%-closed subset of R".

() If Y C X is A %-closed, then Vx(Ix(Y)) =Y.
@) If I is an ideal in <7,(X), then Tx Vx (1)) = radx (I).

Proof (i) By Theorem 1, given an «/Z%-closed Y in R", there exists f € <7, (R")
such that ¥ = V(f). Then, the restriction f|y isin Zx(Y), and so Vx(Zx(Y)) C
Vx(flx) =Y. The inclusion Vx (Zx(Y)) D Y is obvious.

(ii) Given anideal I in <7,(X), we have Vx (1) = ﬂfel £~1(0), hence, by noetheri-
anity of &% topology, Vx (I) = fl_1 on-- -ﬂfr_l(O), forsome fi,..., fr € 1.
Setting g := f2 + -+ f2, we get Vx(I) = Vx(g).

Let f € Zx(Vx(I)) be arbitrary. Since g~1(0) c f~1(0), it follows from [11,
Prop.6.5] that f € radx((g)), and hence f € rady (I). This proves that Zx (Vx (1)) C
rady (). The opposite inclusion follows from the fact that Zx (Vx (1)) is aradical ideal
which contains /. O

Corollary 1 Let X be an /% -closed subset of R".

(i) An IR-closet set Y C X is irreducible iff its ideal Tx (Y) is prime.
(ii) The zero locus Vx (p) of a prime ideal p in <7,(X) is an irreducible o/%-closed
set.
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A proof of Kurdyka’s conjecture on arc-analytic functions

Proof The implication from left to right in (i) follows simply from the fact that the
zero locus of every arc-analytic function is .2Z%-closed. The remaining statements of
the corollary, in turn, follow immediately from Proposition 1. O

Let X be an .@/%-closed set in R". Proposition 1 together with equality dimgX =
dimg X from Sect. 2 imply immediately that every ascending sequence of prime ideals
in o7, (X) is of finite length, and the Krull dimension of o7, (X) is precisely dim X,
which gives a quick alternative proof of [11, Prop.6.10]. Proposition 1 can be also
used to establish a one-to-one correspondence between irreducible components of
X and the minimal primes of Z(X). (Recall from Sect. 2 that every «Z%-closed set
X has a decomposition into finitely many .«Z%-closed sets, called its &/Z%-irreducible
components, none of which can be decomposed into a union of two proper .«Z%-closed
subsets.)

Proposition 2 Let X, Y be o/%-closed sets in R", with Y C X. The decomposition
of Y into /% -irreducible components is given by Y = Vx(p1)U---UVx(p,), where
P1, ..., Py are precisely the minimal prime ideals of the ring <7,(X) which contain
Ix(Y).

Proof Let Y1, ..., Y, be the @/%-irreducible components of Y. Then, ¥; ¢ Y; for
i #j.Setp; :=7Zx(Y;),i =1,...,r. By Proposition 1(i), we have ¥; = Vx (p;). It
follows that Y = Vx(p1) U --- U Vx(p,).

By Corollary 1(i), each p; is a prime ideal of .27, (X) containing Zx (Y). Suppose
that p is a prime ideal of <7, (X) such that Zx(Y) C p C p; for some i. Then ¥ D
Vx(p) D Y;. By Corollary 1(ii), Vx (p) is @/%-irreducible, and hence there exists j
such that Vx(p) C Y;.ButthenY; C Y;,andsoi = j.Itfollows that Vx (p) = Y;, and
hence p = p;, by Proposition 1(ii). This proves that p; is a minimal prime of <7, (X)
which contains Zx (Y).

It remains to see that py, ..., p, are all such primes. Let p be a prime in 7, (X)
containing Zx (Y). Then, Vx(p) C Y. By irreducibility of Vx(p), it follows that
Vx (p) C Y; for some i. Hence, by Proposition 1 again, p D p;. O

5 Extension of arc-analytic functions

Despite some close analogies with Zariski topology over an algebraically closed field
(as seen in the previous section), there are still some important open questions con-
cerning the relationship between algebra and geometry in the «/% setting. We suspect
that the techniques of Sect. 3 can be used to show that every arc-analytic semialge-
braic function on an «7%-closed set X in IR” is, in fact, a restriction of an element of
A (R").

Conjecture 1 Let X C R" be o/%-closed. Every arc-analytic semialgebraic function
f : X — R can be extended to an arc-analytic semialgebraic function on the entire
R". In other words, <7,(X) >~ <7,(R")/Z(X) as R-algebras.

Remark 2 The extension question has recently been settled for continuous rational
functions. In [9], the authors showed that the analogue of Conjecture 1 holds for the
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so-called hereditarily rational functions but, in general, fails for continuous rational
functions.

We finish the paper with some initial results on the extension of arc-analytic func-
tions, which give a partial justification for the conjecture. Let X C R" be &Z%-closed,
andlet f € 7, (X). We denote by Sing( f) the locus of points x € Reg; (X) such that f
is not analytic at x. Recall that Sing( f) is semialgebraic, and dim Sing( f) < dim X —2
(see, e.g., [1], and cf. [11, Thm.5.2]).

Proposition 3 Let X be an @/%-closed set in R", and let f € o,(X). There exists
h e (R, with dimh~'(0) < dim X, such that fh can be extended to an arc-
analytic semialgebraic function F € o, (R").

Proof As in the proof of Theorem 1, let 7 : R — R" be an embedded desingulariza-
tion of Yzar, and let E be the union of connected components of the strict transform X

onZar such that 7 (E) = Reg; (X), where k = dim X. By [1, Thm. 1.1], there exists a
finite composition of blowings-up o : R — R (with smooth algebraic centres) which
converts the arc-analytic semialgebraic function f o into a Nash function fomw oo.
In particular, f o w o 0|z is Nash, where E is the strict transform of E by o. Let
Z be the centre of w o o (i.e., the subset of R" outside of whose preimage 7 o o is

an isomorphism). Notice that Z is the union of the singular locus of X”" and the
images of all the centres of blowings-up involved in o. Then, Z is .«/%-closed and of
dimension less than k. o

By Theorem 1, there exists 7 € o7, (R") such that Z UReg_,(X) =~ = h10),
where Reg_; (X) denotes the locus of smooth points of X of dimensions less than k.
It follows that dim 2~ 1(0) < k.

We can extend f o7 o o]z, by [3, Cor.8.9.13], to a Nash function g : R — R.
Now, define F : R” — R as

Py | (@0 o™ ) @), x g2
0, xeZ.

As in the proof of Theorem 1, one easily verifies that F is arc-analytic on R”. By

construction, F is semialgebraic and satisfies F(x) = (fh)(x) forall x € X. O

Proposition 4 Let X C R” be an algebraic set of pure dimension k, with an isolated
singularity at p € R". Let f € <7,(X) be analytic except perhaps at p, and suppose
that f(p) = 0. Then, there exists d > 1 such that f? can be extended to an arc-
analytic semialgebraic function F € <7, (R").

Proof Letn : R — R", E,o: R — E Z, and E be as in the proof of Proposition 3.
By [12, Thm. 1.3], the (smooth Nash) centres of the blowings-up in o can be chosen
such that o is an isomorphism outside the preimage of Sing( f o). Consequently, one
can assume that 77 o o is an isomorphism outside the preimage of p (i.e., Z = {p}).
By assumptions on X, it also follows that E (resp. E ) is the entire strict transform of
X by  (resp.by 7 o 0).
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Let h(x) := |lx — p||* be the square of the Euclidean distance from the point p.
Then, by [11, Prop.6.5], there exists d > 1 and a function f; € 7 (X) such that
f% = fi-h. Since h is analytic on R” and non-vanishing outside of p, it follows that
Sing( f1) C Sing(f). One can thus, without loss of generality, assume that o converts
the arc-analytic semialgebraic function f o 7 into a Nash function fj ow o o. Asin
the proof of Proposition 3, let g € (I/Q\) be an extension of the function fjom oo|z.
Define

((goo™! onfl)-h)(x), X#p

F(x) :=
2 0, xX=p.
As in the proof of Theorem 1, one easily verifies that F is arc-analytic on R”. By
construction, F is semialgebraic and satisfies F'(x) = f d(x) forall x € X. m|
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