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Abstract We prove a conjecture of Kurdyka stating that every arc-symmetric semi-
algebraic set is precisely the zero locus of an arc-analytic semialgebraic function.
This implies, in particular, that arc-symmetric semialgebraic sets are in one-to-one
correspondence with radical ideals of the ring of arc-analytic semialgebraic functions.
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1 Introduction

A set X in R
n is called semialgebraic if it can be written as a finite union of sets

of the form {x ∈ R
n : p(x) = 0, q1(x) > 0, . . . , qr (x) > 0}, where r ∈ N and

p, q1, . . . , qr ∈ R[x1, . . . , xn]. Given X ⊂ R
n , a semialgebraic function f : X → R

is one whose graph is a semialgebraic subset of R
n+1. A function f : X → R is

called arc-analytic if it is analytic along every arc, that is, if f ◦γ is analytic for every
real-analytic γ : (−1, 1) → X .

Let X be a semialgebraic subset of R
n . We say that X is arc-symmetric if, for every

analytic arc γ : (−1, 1) → R
n with γ ((−1, 0)) ⊂ X , we have γ ((−1, 1)) ⊂ X .

Communicated by Jean-Yves Welschinger.

J. Adamus’s research was partially supported by the Natural Sciences and Engineering Research Council
of Canada.

B Janusz Adamus
jadamus@uwo.ca

Hadi Seyedinejad
sseyedin@uwo.ca

1 Department of Mathematics, University of Western Ontario, London, ON N6A 5B7, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-017-1544-0&domain=pdf
http://orcid.org/0000-0003-3068-1161


J. Adamus, H. Seyedinejad

Our main result is the following affirmative answer to a conjecture of Kurdyka [11,
Conj. 6.3]:

Theorem 1 Let X be an arc-symmetric semialgebraic set in R
n. There exists an arc-

analytic semialgebraic function f : R
n → R such that X = f −1(0).

The elegant theory of arc-symmetric semialgebraic sets was developed by Kurdyka
[11]. It is based on a fundamental observation ([11, Thm.1.4]) that the arc-symmetric
semialgebraic sets are precisely the closed sets of a certain noetherian topology onR

n .
(A topology is called noetherian when every descending sequence of its closed sets is
stationary.) Following [11], we will call it the AR topology, and the arc-symmetric
semialgebraic sets will henceforth be called AR-closed sets.

Noetherianity of the AR topology allows one to make sense of the notions of
irreducibility and components of a semialgebraic set much like in the algebraic case
(see Sect. 2 for details). The class of AR-closed sets includes, in particular, the
algebraic sets as well as the Nash analytic sets (in the sense of [3]). TheAR topology
is strictly finer than the Zariski topology on R

n (see, e.g., [11, Ex.1.2]). Moreover,
it follows from the semialgebraic Curve Selection Lemma that AR-closed sets are
closed in the Euclidean topology in R

n (see [11, Rem.1.3]).

Remark 1 It is interesting to compare theAR topology with other noetherian refine-
ments of Zariski topology, in which closed sets are defined as the zero loci of functions
more general than polynomials, such as Nash functions or continuous rational func-
tions. Continuous rational (a.k.a. regulous over R

n) functions have recently attracted
attention of numerous authors (see, e.g., [6,8–10]). The refinement arising from Nash
functions was studied in [5]. It turns out that the AR topology is strictly finer than
both Nash and regulous topologies, which incidentally are incomparable. This topic
is studied in detail in a subsequent paper by the second author.

Given an AR-closed set X in R
n , we denote by Aa(X) the ring of arc-analytic

semialgebraic functions on X . The elements of Aa(X) play the role of ‘regular func-
tions’ inAR geometry. Indeed, it is not difficult to see ([11, Thm.5.1]) that the graph
as well as the zero locus of every arc-analytic semialgebraic mapping f : X → R

m

are AR-closed as well. On the other hand, up until now it was not known whether
every AR-closed set may be realized as the zero locus of an arc-analytic function.
Our Theorem 1 fills this gap in the theory. It shows that AR topology is in fact the
one defined by arc-analytic semialgebraic functions, which is not at all apparent from
its definition.

In the next section, we recall basic notions and tools used in this article. Theorem 1
is proved in Sect. 3. In Sect. 4, we prove an AR version of the duality between
closed sets and radical ideals, which is an easy consequence of Theorem 1. The last
section contains some initial results concerning extension of arc-analytic functions.
We conjecture that Aa(X) � Aa(R

n)/I(X) for every AR-closed set X in R
n .

2 Preliminaries

First, we shall recall several properties ofAR-closed sets that will be used throughout
the paper. For details and proofs we refer the reader to [11].
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A proof of Kurdyka’s conjecture on arc-analytic functions

AnAR-closed set X is calledAR-irreducible if it cannot be written as a union of
two properAR-closed subsets. It follows fromnoetherianity of theAR topology ([11,
Prop. 2.2]) that everyAR-closed set admits a unique decomposition X = X1∪· · ·∪Xr

into AR-irreducible sets satisfying Xi �⊂ ⋃
j �=i X j for each i = 1, . . . , r . The sets

X1, . . . , Xr are called the AR-components of X .

For a semialgebraic set E in R
n , let E

Zar
denote the Zariski closure of E , that is,

the smallest real-algebraic subset of R
n containing E . Similarly, let E

AR
denote the

AR-closure of E in R
n . Consider the following three kinds of dimension of E :

– the geometric dimension dimgE , defined as the maximum dimension of a real-
analytic submanifold of (an open subset of) R

n contained in E ,

– the algebraic dimension dima E , defined as dim E
Zar

,
– theAR topological (orKrull) dimension dimKE , defined as themaximum length l

of a chain X0 � X1 � · · · � Xl ⊂ E
AR

, where X0, . . . , Xl areAR-irreducible.

It is well known that dimgE = dima E (see, e.g., [3, Sec. 2.8]). By [11, Prop. 2.11],
we also have dima E = dimKE . We shall denote this common dimension simply as
dim E . By convention, dim∅ = −1.

An essential tool in our proofs is the blowing-up of R
n at a Nash subset. Recall that

a subset Z of a semialgebraic open U ⊂ R
n is called Nash if it is the zero locus of

a Nash function f : U → R. A function f : U → R is called a Nash function if it
is an analytic algebraic function on U , that is, a real-analytic function such that there
exists a non-zero polynomial P ∈ R[x, t] with P(x, f (x)) = 0, for every x ∈ U . We
denote the ring of all Nash functions on U byN (U ). We refer the reader to [3, Ch.8]
for details on Nash sets and mappings.

Let Z be a Nash subset of R
n . Consider the ideal I(Z) inN (Rn) of all Nash func-

tions on R
n vanishing on Z . By noetherianity of N (Rn) (see, e.g., [3, Thm.8.7.18]),

there are f1, . . . , fr ∈ N (Rn) such that I(Z) = ( f1, . . . , fr ). Set

R̃:={(x, [u1, . . . , ur ]) ∈ R
n × P

r−1 : ui f j (x) = u j fi (x) for all i, j = 1, . . . , r} .

The restriction σ : R̃ → R
n to R̃ of the canonical projection R

n × P
r−1 → R

n

is the blowing-up of R
n at (the centre) Z . One can verify that R̃ is independent of

the choice of generators f1, . . . , fr of I(Z). Since a real projective space is an affine
algebraic set (see, e.g., [3, Thm.3.4.4]), one can assume that R̃ is a Nash subset of
R

N for some N ∈ N. If X is a Nash subset of R
n , then the smallest Nash subset X̃

of R̃ containing σ−1(X\Z) is called the strict transform of X (by σ ). In this case, if
Z ⊂ X , then we may also call X̃ the blowing-up of X at Z .

For a semialgebraic set E and a natural number d, we denote by Regd(E) the locus
of those points x ∈ E at which Ex is a germ of a d-dimensional analytic manifold.
If dim E = k, we set Sing(E) := E\Regk(E). Then, Sing(E) is semialgebraic and
dim Sing(E) < dim E .

Finally, recall that every algebraic set X in R
n admits an embedded desingulariza-

tion. That is, there exists a proper mapping π : R̃ → R
n which is the composition

of a finite sequence of blowings-up with smooth algebraic centres, such that π is an
isomorphism outside the preimage of the singular locus Sing(X) of X , the strict trans-
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form X̃ of X is smooth, and X̃ and π−1(Sing(X)) simultaneously have only normal
crossings. (The latter means that every point of R̃ admits a (local analytic) coordi-
nate neighbourhood in which X̃ is a coordinate subspace and each hypersurface H of
π−1(Sing(X)) is a coordinate hypersurface.) For details on resolution of singularities
we refer the reader to [2] or [7].

3 Proof of the main theorem

In [11, Thm.6.2], Kurdyka showed that, given anAR-closed set X in R
n , there exists

f ∈ Aa(R
n) such that X ⊂ f −1(0) and dim( f −1(0)\X) < dim X . Our proof of

Theorem 1 follows the general idea of the above in that we lift the problem to a
desingularization of the Zariski closure of X . We later lift it once more by a single
blowing-up, to control the excess of zeros of f .

Proof of Theorem 1

Let X be an AR-closed set in R
n . We argue by induction on dimension of X .

If dim X ≤ 0, then X is just a finite set and hence the zero locus of a polynomial
function. Suppose then that dim X = k > 0, and every AR-closed set of dimension
smaller than k is the zero locus of an arc-analytic semialgebraic function on R

n . We
may also assume that X is AR-irreducible.

LetY be the singular locus of X
Zar

. Letπ : R̃ → R
n be an embedded desingulariza-

tionof X
Zar
, and let X̃ be the strict transformof X

Zar
. Then,π is an isomorphismoutside

the preimage of Y . Since X ∩ Y is anAR-closed set of dimension smaller than k, the
inductive hypothesis implies that there exists h ∈ Aa(R

n) such that X ∩ Y = h−1(0).
By [11, Thm.2.6], there exists a connected component E of X̃ , such that the

Euclidean closure Regk(X) is equal to π(E). Further, let D := π−1(Y ) and Z :=
E ∩ D. Let σ : R̂ → R̃ be the blowing-up of R̃ at Z . As discussed in Sect. 2, we
can assume that R̂ ⊂ R

N for some N ∈ N. Let Ê and D̂ be the strict transforms of
E and D by σ , respectively. Since E and D have only normal crossings, Ê and D̂ are
disjoint subsets of R̂.

By the semialgebraic Tietze–Urysohn Theorem ([3, Prop. 2.6.9]), disjoint closed
semialgebraic subsets can be separated by open semialgebraic sets. Let thenU1 andU2
be open semialgebraic subsets of R

N such that Ê ⊂ U1, D̂ ⊂ U2, and U1 ∩U2 = ∅.
Define a Nash function q : U1 ∪U2 → R as

q(z) :=
{
0, z ∈ U1

1, z ∈ U2 .

By the Efroymson extension theorem (see [4] or [3, Thm.8.9.12]), the function q
admits a Nash extension to the whole R

N ; that is, there exists g ∈ N (RN ) such that
g|Ê∪D̂ = q|Ê∪D̂ . Moreover, the set Ê ∪ D̂ being closed Nash in R

N , there exists
v ∈ N (RN ) such that Ê ∪ D̂ = v−1(0). Now, define

f̂ := (
g · (h ◦ π ◦ σ)

)2 + v2 .
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Observe that f̂ is an arc-analytic function defined on R
N (hence, in particular, on R̂),

f̂ = (h ◦ π ◦ σ)2 on D̂, f̂ = 0 on Ê , and f̂ never vanishes outside of Ê ∪ D̂.
Next, we push down f̂ by σ in order to get an arc-analytic function on R̃. More

precisely, we define f̃ : R̃ → R as

f̃ (y) :=
{

(( f̂ ◦ σ−1) · (h ◦ π))(y), y /∈ Z

0, y ∈ Z .

To see that f̃ is arc-analytic, let γ̃ : (0, 1) → R̃ be an analytic arc and let γ̂ : (0, 1) →
R̂ be its lifting by σ . Then, σ ◦ γ̂ = γ̃ . We claim that

f̃ ◦ γ̃ = ( f̂ ◦ γ̂ ) · (h ◦ π ◦ γ̃ ) , (1)

which implies that f̃ ◦ γ̃ is analytic. Indeed, if γ̃ (t) /∈ Z , then (1) holds because
( f̂ ◦ σ−1 ◦ γ̃ )(t) = ( f̂ ◦ σ−1 ◦ σ ◦ γ̂ )(t) = ( f̂ ◦ γ̂ )(t). If, in turn, γ̃ (t) ∈ Z , then
(h ◦ π ◦ γ̃ )(t) = 0, by definition of h, and hence both sides of (1) are equal to zero.

Now, we push down f̃ by π in order to get an arc analytic function on R
n . More

precisely, we define f : R
n → R as

f (x) :=
{

( f̃ ◦ π−1)(x), x /∈ Y

h3(x), x ∈ Y .

To see that f is arc-analytic, let γ : (0, 1) → R
n be an analytic arc. Let γ̃ : (0, 1) → R̃

be the lifting of γ byπ , and let γ̂ : (0, 1) → R̂ be the lifting of γ̃ byσ . Then,π◦γ̃ = γ ,
and σ ◦ γ̂ = γ̃ . We claim that

f ◦ γ = f̃ ◦ γ̃ , (2)

which implies that f ◦ γ is analytic. Indeed, if γ (t) /∈ Y , then (2) holds because
( f̃ ◦ π−1 ◦ γ )(t) = ( f̃ ◦ π−1 ◦ π ◦ γ̃ )(t) = ( f̃ ◦ γ̃ )(t). If, in turn, γ (t) ∈ Y ∩ π(E),
then h(γ (t)) = 0 and hence ( f ◦ γ )(t) = 0. But γ̃ (t) ∈ Z , and hence ( f̃ ◦ γ̃ )(t) = 0
as well. Finally, if γ (t) ∈ Y\π(E), then γ̃ (t) /∈ Z and γ̂ (t) ∈ D̂; hence, by (1), we
have

( f̃ ◦ γ̃ )(t) = (( f̂ ◦ γ̂ ) · (h ◦ π ◦ γ̃ ))(t) =
(
((h ◦ π ◦ σ)2 ◦ γ̂ ) · (h ◦ π ◦ γ̃ )

)
(t)

=
(
(h ◦ π ◦ γ̃ )2 · (h ◦ π ◦ γ̃ )

)
(t) = (h ◦ π ◦ γ̃ )3(t) = (h ◦ γ )3(t)

= ( f ◦ γ )(t) .

We shall now calculate the zero locus of f .

f −1(0) = {x ∈ R
n\Y : ( f̃ ◦ π−1)(x) = 0} ∪ {x ∈ Y : h3(x) = 0}

= π
({
y ∈ R̃\D : f̃ (y) = 0

}) ∪ (X ∩ Y )
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= π
({

y ∈ R̃\D : (( f̂ ◦ σ−1) · (h ◦ π))(y) = 0
})

∪ (X ∩ Y )

= π
({

y ∈ R̃\D : ( f̂ ◦ σ−1)(y) = 0
})

∪ (X ∩ Y )

=
(
(π ◦ σ)({z ∈ R̂\σ−1(D) : f̂ (z) = 0})

)
∪ (X ∩ Y )

= (π ◦ σ)(Ê\σ−1(D)) ∪ (X ∩ Y )

= π(E\D) ∪ (X ∩ Y )

= (Regk(X) \Y ) ∪ (X ∩ Y ) .

It follows that the AR-closed set f −1(0) is contained in X and contains the AR-

closure Regk(X)
AR

. By AR-irreducibility of X however, the set Regk(X) is AR-
dense in X . We thus get f −1(0) = X , which completes the proof. ��

4 Algebro-geometric duality

Theorem 1 allows one to establish a direct dictionary between the AR-closed sets
and the radical ideals in the ring of arc-analytic semialgebraic functions, analogous to
the case of Zariski topology over an algebraically closed field.

Let X and Y be AR-closed sets in R
n , with Y ⊂ X . We will denote by IX (Y ) the

ideal in Aa(X) of the functions that vanish on Y . If X = R
n , we will write I(Y ) for

IX (Y ). For an ideal I in Aa(X), we will denote by VX (I ) the set of points x ∈ X
at which all f ∈ I vanish. Further, radX (I ) will denote the radical of I in Aa(X). If
X = R

n , we shall write V(I ) for VX (I ), and rad(I ) for radX (I ).

Proposition 1 Let X be an AR-closed subset of R
n.

(i) If Y ⊂ X is AR-closed, then VX (IX (Y )) = Y .
(ii) If I is an ideal in Aa(X), then IX (VX (I )) = radX (I ).

Proof (i) By Theorem 1, given an AR-closed Y in R
n , there exists f ∈ Aa(R

n)

such that Y = V( f ). Then, the restriction f |X is in IX (Y ), and so VX (IX (Y )) ⊂
VX ( f |X ) = Y . The inclusion VX (IX (Y )) ⊃ Y is obvious.

(ii) Given an ideal I inAa(X), we have VX (I ) = ⋂
f ∈I f −1(0), hence, by noetheri-

anity ofAR topology, VX (I ) = f −1
1 (0)∩· · ·∩ f −1

r (0), for some f1, . . . , fr ∈ I .
Setting g := f 21 + · · · + f 2r , we get VX (I ) = VX (g).

Let f ∈ IX (VX (I )) be arbitrary. Since g−1(0) ⊂ f −1(0), it follows from [11,
Prop. 6.5] that f ∈ radX ((g)), and hence f ∈ radX (I ). This proves that IX (VX (I )) ⊂
radX (I ). The opposite inclusion follows from the fact that IX (VX (I )) is a radical ideal
which contains I . ��
Corollary 1 Let X be an AR-closed subset of R

n.

(i) An AR-closet set Y ⊂ X is irreducible iff its ideal IX (Y ) is prime.
(ii) The zero locus VX (p) of a prime ideal p in Aa(X) is an irreducible AR-closed

set.
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Proof The implication from left to right in (i) follows simply from the fact that the
zero locus of every arc-analytic function is AR-closed. The remaining statements of
the corollary, in turn, follow immediately from Proposition 1. ��

Let X be an AR-closed set in R
n . Proposition 1 together with equality dimgX =

dimKX from Sect. 2 imply immediately that every ascending sequence of prime ideals
in Aa(X) is of finite length, and the Krull dimension of Aa(X) is precisely dim X ,
which gives a quick alternative proof of [11, Prop. 6.10]. Proposition 1 can be also
used to establish a one-to-one correspondence between irreducible components of
X and the minimal primes of I(X). (Recall from Sect. 2 that every AR-closed set
X has a decomposition into finitely manyAR-closed sets, called itsAR-irreducible
components, none of which can be decomposed into a union of two properAR-closed
subsets.)

Proposition 2 Let X,Y be AR-closed sets in R
n, with Y ⊂ X. The decomposition

of Y intoAR-irreducible components is given by Y = VX (p1)∪ · · ·∪VX (pr ), where
p1, . . . , pr are precisely the minimal prime ideals of the ring Aa(X) which contain
IX (Y ).

Proof Let Y1, . . . ,Yr be the AR-irreducible components of Y . Then, Yi �⊂ Y j for
i �= j . Set pi := IX (Yi ), i = 1, . . . , r . By Proposition 1(i), we have Yi = VX (pi ). It
follows that Y = VX (p1) ∪ · · · ∪ VX (pr ).

By Corollary 1(i), each pi is a prime ideal of Aa(X) containing IX (Y ). Suppose
that p is a prime ideal of Aa(X) such that IX (Y ) ⊂ p ⊂ pi for some i . Then Y ⊃
VX (p) ⊃ Yi . By Corollary 1(ii), VX (p) is AR-irreducible, and hence there exists j
such that VX (p) ⊂ Y j . But then Yi ⊂ Y j , and so i = j . It follows that VX (p) = Yi , and
hence p = pi , by Proposition 1(ii). This proves that pi is a minimal prime of Aa(X)

which contains IX (Y ).
It remains to see that p1, . . . , pr are all such primes. Let p be a prime in Aa(X)

containing IX (Y ). Then, VX (p) ⊂ Y . By irreducibility of VX (p), it follows that
VX (p) ⊂ Yi for some i . Hence, by Proposition 1 again, p ⊃ pi . ��

5 Extension of arc-analytic functions

Despite some close analogies with Zariski topology over an algebraically closed field
(as seen in the previous section), there are still some important open questions con-
cerning the relationship between algebra and geometry in theAR setting. We suspect
that the techniques of Sect. 3 can be used to show that every arc-analytic semialge-
braic function on an AR-closed set X in R

n is, in fact, a restriction of an element of
Aa(R

n).

Conjecture 1 Let X ⊂ R
n beAR-closed. Every arc-analytic semialgebraic function

f : X → R can be extended to an arc-analytic semialgebraic function on the entire
R
n. In other words, Aa(X) � Aa(R

n)/I(X) as R-algebras.

Remark 2 The extension question has recently been settled for continuous rational
functions. In [9], the authors showed that the analogue of Conjecture 1 holds for the
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so-called hereditarily rational functions but, in general, fails for continuous rational
functions.

We finish the paper with some initial results on the extension of arc-analytic func-
tions, which give a partial justification for the conjecture. Let X ⊂ R

n beAR-closed,
and let f ∈ Aa(X).We denote by Sing( f ) the locus of points x ∈ Regk(X) such that f
is not analytic at x . Recall that Sing( f ) is semialgebraic, and dim Sing( f ) ≤ dim X−2
(see, e.g., [1], and cf. [11, Thm.5.2]).

Proposition 3 Let X be an AR-closed set in R
n, and let f ∈ Aa(X). There exists

h ∈ Aa(R
n), with dim h−1(0) < dim X, such that f h can be extended to an arc-

analytic semialgebraic function F ∈ Aa(R
n).

Proof As in the proof of Theorem 1, let π : R̃ → R
n be an embedded desingulariza-

tion of X
Zar
, and let E be the union of connected components of the strict transform X̃

of X
Zar

such that π(E) = Regk(X), where k = dim X . By [1, Thm.1.1], there exists a
finite composition of blowings-up σ : R̂ → R̃ (with smooth algebraic centres) which
converts the arc-analytic semialgebraic function f ◦π into a Nash function f ◦π ◦σ .
In particular, f ◦ π ◦ σ |Ê is Nash, where Ê is the strict transform of E by σ . Let
Z be the centre of π ◦ σ (i.e., the subset of R

n outside of whose preimage π ◦ σ is

an isomorphism). Notice that Z is the union of the singular locus of X
Zar

and the
images of all the centres of blowings-up involved in σ . Then, Z isAR-closed and of
dimension less than k.

By Theorem 1, there exists h ∈ Aa(R
n) such that Z ∪ Reg<k(X)

AR = h−1(0),
where Reg<k(X) denotes the locus of smooth points of X of dimensions less than k.
It follows that dim h−1(0) < k.

We can extend f ◦ π ◦ σ |Ê , by [3, Cor. 8.9.13], to a Nash function g : R̂ → R.
Now, define F : R

n → R as

F(x) :=
{(

(g ◦ σ−1 ◦ π−1) · h)
(x) , x /∈ Z

0 , x ∈ Z .

As in the proof of Theorem 1, one easily verifies that F is arc-analytic on R
n . By

construction, F is semialgebraic and satisfies F(x) = ( f h)(x) for all x ∈ X . ��
Proposition 4 Let X ⊆ R

n be an algebraic set of pure dimension k, with an isolated
singularity at p ∈ R

n. Let f ∈ Aa(X) be analytic except perhaps at p, and suppose
that f (p) = 0. Then, there exists d ≥ 1 such that f d can be extended to an arc-
analytic semialgebraic function F ∈ Aa(R

n).

Proof Let π : R̃ → R
n , E , σ : R̂ → R̃, Z , and Ê be as in the proof of Proposition 3.

By [12, Thm.1.3], the (smooth Nash) centres of the blowings-up in σ can be chosen
such that σ is an isomorphism outside the preimage of Sing( f ◦π). Consequently, one
can assume that π ◦ σ is an isomorphism outside the preimage of p (i.e., Z = {p}).
By assumptions on X , it also follows that Ẽ (resp. Ê) is the entire strict transform of
X by π (resp.by π ◦ σ ).
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Let h(x) : = ‖x − p‖2 be the square of the Euclidean distance from the point p.
Then, by [11, Prop. 6.5], there exists d ≥ 1 and a function f1 ∈ Aa(X) such that
f d = f1 ·h. Since h is analytic on R

n and non-vanishing outside of p, it follows that
Sing( f1) ⊂ Sing( f ). One can thus, without loss of generality, assume that σ converts
the arc-analytic semialgebraic function f1 ◦ π into a Nash function f1 ◦ π ◦ σ . As in
the proof of Proposition 3, let g ∈ N (R̂) be an extension of the function f1 ◦π ◦σ |Ê .
Define

F(x) :=
{(

(g ◦ σ−1 ◦ π−1) · h)
(x) , x �= p

0 , x = p .

As in the proof of Theorem 1, one easily verifies that F is arc-analytic on R
n . By

construction, F is semialgebraic and satisfies F(x) = f d(x) for all x ∈ X . ��

References

1. Bierstone, E., Milman, P.D.: Arc-analytic functions. Invent. Math. 101, 411–424 (1990)
2. Bierstone, E., Milman, P.D.: Canonical desingularization in characteristic zero by blowing up the

maximum strata of a local invariant. Invent. Math. 128(2), 207–302 (1997)
3. Bochnak, J., Coste, M., Roy, M.: Real algebraic geometry. In: Ergebnisse der Mathematik und ihrer

Grenzgebiete (3), no. 36, Springer, Berlin (1998)
4. Efroymson, G.: The extension theorem for Nash functions. In: Real Algebraic Geometry andQuadratic

Forms (Rennes, 1981), Lecture Notes in Math., 959, Springer, Berlin, pp. 343–357 (1982)
5. Fernando, J.F., Gamboa, J.M.: On the irreducible components of a semialgebraic set. Int. J. Math.

23(4), 1250031 (2012)
6. Fichou, G., Huisman, J., Mangolte, F., Monnier, J.-P.: Fonctions régulues. J. Reine Angew. Math. 718,

103–151 (2016)
7. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero: I,

II. Ann. Math. 79, 109–326 (1964)
8. Kollár, J., Kucharz, W., Kurdyka, K.: Curve-rational functions. Math. Ann. (2017). doi:10.1007/

s00208-016-1513-z
9. Kollár, J., Nowak, K.: Continuous rational functions on real and p-adic varieties. Math. Z. 279, 85–97

(2015)
10. Kucharz, W.: Rational maps in real algebraic geometry. Adv. Geom. 9, 517–539 (2009)
11. Kurdyka, K.: Ensembles semi-algébriques symétriques par arcs. Math. Ann. 282, 445–462 (1988)
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