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Tameness of Complex Dimension
in a Real Analytic Set
Janusz Adamus, Serge Randriambololona, and Rasul Shafikov

Abstract. Given a real analytic set X in a complex manifold and a positive integer d, denote by Ad the
set of points p in X at which there exists a germ of a complex analytic set of dimension d contained in
X. It is proved that Ad is a closed semianalytic subset of X.

1 Introduction and Main Results

The existence or non-existence of complex analytic germs in a given real hypersur-
face X of a complex manifold plays an important role in the theory of holomorphic
mappings. A particularly interesting case is when X is real analytic. For example, in
[7] Diederich and Fornæss showed that a compact real analytic set X in Cn does not
contain germs of complex analytic sets of positive dimension. If X is not compact,
then the set A1 of points p in X such that there exists a positive-dimensional complex
analytic germ Y p with Y p ⊂ Xp is non-empty in general. It is a natural problem to
describe the structure of the set A1. D’Angelo [6] and Diederich and Mazzilli [8],
using different methods, proved that A1 is closed in X. In [8] the authors also asked
whether A1 is a real analytic subset of X. Our main theorem answers this question.

Theorem 1.1 Let X be a closed real analytic subset of an open set in Cn. Let Ad denote
the set of points p in X such that Xp, the germ of the set X at p, contains a complex
analytic germ of dimension d. Then Ad is a closed semianalytic subset of X, for every
d ∈ N. Moreover, if X is real algebraic, then Ad is semialgebraic in X.

The proof of closedness of Ad, given in Proposition 3.2, is similar in spirit to [8]
(where it is done for A1), but we do not use volume estimates or Bishop’s theorem.
Instead, our proof relies purely on the properties of Segre varieties. The following
example, which is due to Meylan, Mir, and Zaitsev [12], shows that the set Ad is not
in general real analytic. Consider

X =
{

(z1, . . . , z4) ∈ C4 : x2
1 − x2

2 + x2
3 = x3

4

}
,

where z j = x j + i y j , j = 1, . . . , 4. Near (1, 1, 0, 0) the set X is a smooth real algebraic
manifold. For every point z in X with x4 ≥ 0 there is a complex line passing through z
and contained in X. But if x4 < 0, then X can be expressed (locally near z) as a graph
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of a strictly convex function, and therefore there cannot be any germs of positive-
dimensional complex analytic sets in X. Thus A1 coincides with X∩{x4 ≥ 0}, which
is semianalytic (even semialgebraic) but not analytic.

Remark 1.2 Another (in a sense, dual) question that can be asked about a germ Xp

of a real analytic set is: what is the smallest dimension of a complex analytic germ at
p containing Xp, and what can be said about the structure of the subset of X along
which this minimal dimension is realized? It is shown in [2, Thm. 1.5] that for an
irreducible real analytic subset X of Cn of pure dimension d > 0 this so-called holo-
morphic closure dimension attains its minimum h outside a closed semianalytic subset
S ⊂ X of dimension less than d. In fact, X \ S is a CR manifold of CR dimension
d − h. Interestingly, X does not in general admit semianalytic (not even subanalytic,
see [2, Ex. 6.3]) stratification by holomorphic closure dimension beyond S. (See also
[1] for the semialgebraic context.) By comparison, Theorem 1.1 implies a semiana-
lytic filtration of X, X = A0 ⊃ A1 ⊃ · · · ⊃ An−1.

Semianalyticity is a consequence of the description of the set Ad given in Theo-
rem 1.4 below. We first need to introduce some notation. Let %(z, z) be a real analytic
function on some open polydisc V b Cn given by a power series convergent in a
neighbourhood of V such that

(1.1) X ∩V = {z ∈ V : %(z, z) = 0}.

As in the smooth case (see, e.g., [16]), for a point w ∈ V , we define the Segre variety
of w as

(1.2) Sw = {z ∈ V : %(z,w) = 0}.

For more about Segre varieties, see Section 2. Geometric properties of these varieties
will play a crucial role in the proof of Theorem 1.4.

Let κ be a positive integer, and let n ≥ 1 be the complex dimension of the ambient
space of X with variables z = (z1, . . . , zn). For 1 ≤ d ≤ n, let

Λ(d, n) := {λ = (λ1, . . . , λd) ∈ Nd : 1 ≤ λ1 < · · · < λd ≤ n}.

Given λ = (λ1, . . . , λd) ∈ Λ(d, n), we will denote by zλ the sub-collection of vari-
ables (zλ1 , . . . , zλd ).

Definition 1.3 For any 1 ≤ d ≤ n and λ ∈ Λ(d, n), we define a κ-grid with
d-dimensional base zλ, denoted Gκλ, as follows. Let Gκλ be a collection of (κ + 1)d

distinct points pν ∈ V , where ν = (ν1, . . . , νd) ∈ {1, . . . , κ + 1}d, such that

(i) for each pair (pν , pν ′) of elements of Gκλ, we have %(pν , pν ′) = 0, and
(ii) for pν and pν ′ in Gκλ, we have ν j = ν ′j if and only if pν and pν ′ have the same

λ j-th coordinate (as vectors in Cn).

We denote by B(p, ε) the standard open Euclidean ball of radius ε centred at p.
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Theorem 1.4 Let X be a closed real analytic subset of an open set in Cn, and let V and
% be such that (1.1) holds. Let 1 ≤ d < n, and let Ad be the set of points p in X such
that Xp contains a complex analytic germ of dimension d. Then there exists a positive
integer κ such that the following two statements are equivalent:

(i) p ∈ Ad ∩V ;
(ii) for any ε > 0, there exists a κ-grid Gκλ with a d-dimensional base zλ for some

λ ∈ Λ(d, n) such that Gκλ ⊂ B(p, ε).

In general, the number κ in Theorem 1.4 depends on the defining function %.
However, if X is a smooth real analytic hypersurface, then Segre varieties do not de-
pend on the choice of % provided that the differential of % does not vanish on X, and
in fact, Sw are local biholomorphic invariants of X. Thus, in this case κ is also a local
biholomorphic invariant of X (cf. Section 4).

Another question raised in [8] is whether the set of points on X of infinite D’An-
gelo type is exactly A1. The proof of this fact is given in D’Angelo [6, Sec. 3.3.3, Thm.
4]; however, in [8], the validity of this proof is questioned. We address this issue in
the last section. Our goal is to clarify the definition of type for real analytic sets, and
to give a concise but self-contained proof of the fact that the subset of X of points
of infinite type indeed coincides with the set A1. Combining this with Theorem 1.1
immediately gives the following result.

Corollary 1.5 Given a real analytic set X, the set of points of D’Angelo infinite type is
a closed semianalytic subset of X.

2 Segre Varieties

Given a closed real analytic set X in an open set in Cn of arbitrary positive dimension,
for any point p ∈ X there exists a neighbourhood V ⊂ Cn of p such that X ∩ V is
precisely the zero set of a convergent power series

%(z, z̄) =
∑

|α|+|β|≥1

cαβ(z − p)α(z − p)
β
,

where, for a multi-index β = (β1, . . . , βn) ∈ Nn, wβ denotes the monomial
wβ1

1 · · ·wβn
n , and |β| = β1 + · · · + βn. (Indeed, if X is defined near p by the vanishing

of real analytic functions h1, . . . , ht , one can put % = h2
1 + · · · + h2

t .) For simplicity,
assume that p = 0. By shrinking V if needed, we may further assume that the series
%(z,w) =

∑
cαβzαwβ is also convergent in a neighbourhood of the closure of V ×V .

For a given w ∈ V define the Segre variety Sw of w to be the complex analytic subset
of V defined by (1.2).

The set
Xc = {(z,w) ∈ V ×V : %(z,w) = 0}

is a non-empty complex analytic set defined by a single holomorphic function, and
hence it is of (pure) dimension 2n − 1. It follows that a fibre {z ∈ V : (z,w) ∈ Xc}
over a point w, if nonempty, has dimension n − 1 or n. For every point z ∈ X, we
have %(z, z) = 0, and hence Sz is not empty. Therefore, by the analytic dependence
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of Sw on w, there exist polydisc neighbourhoods U1 b U2 b V of p such that for
any w ∈ U1, the set Sw ∩U2 is a non-empty complex analytic subset of U2 of (pure)
dimension either n − 1 or n. To simplify notation, we will write Sw for Sw ∩ U2,
whenever w ∈ U1. From the definition (1.2), and the fact that %(z, z) is real-valued,
it follows that for z,w ∈ U1,

z ∈ Sw ⇐⇒ w ∈ Sz,(2.1)

z ∈ Sz ⇐⇒ z ∈ X.(2.2)

Let E be the set of points z in U1 such that dim Sz = n; i.e., Sz = U2. Then z ∈ E
implies z ∈ Sz, and therefore E ⊂ X. Furthermore, E 6= X unless X is itself complex
analytic.

Remark 2.1 Apart from properties (2.1) and (2.2), the results of the following sec-
tions rely on a few basic properties of complex analytic sets, which we list here for the
reader’s convenience (for details, see [4] or [11]). Let Y denote a complex analytic
subset of an open set in Cn.

(i) The family of irreducible components of Y is locally finite, and each irre-
ducible component is precisely the set-theoretic closure in Y of a connected com-
ponent of the regular locus of Y .

(ii) The set Y is irreducible if and only if its regular locus Y reg is a connected
manifold. In this case, Y is of pure dimension. Moreover, a proper analytic subset of
an irreducible set Y is of dimension at most dim Y − 1.

(iii) A point z0 ∈ Y is regular (i.e., z0 ∈ Y reg) if and only if there are a natu-
ral number d, an open polydisc U centered at z0, and a sub-collection of variables
(z j1 , . . . , z jd ), such that the projection π onto (the linear subspace of Cn spanned by)
these variables restricted to Y ∩U is a bijection between Y ∩U and π(U ).

(iv) If Y is irreducible, of dimension k > 0, and 0 ∈ Y , then after a (generic)
linear change of coordinates in Cn, there is a neighbourhood Ω × Σ of 0, where
Ω = {(z1, . . . , zk) ∈ Ck : |z j | < δ}, Σ = {(zk+1, . . . , zn) ∈ Cn−k : |z j | < ε} for
some δ, ε > 0, and a proper analytic subset Z of Ω such that the restriction to Y ,
π : Y ∩ (Ω× Σ) → Ω, of the canonical projection Ω× Σ → Ω is proper, surjective,
and locally biholomorphic at every p in (Y ∩ (Ω× Σ)) \ (Z × Σ), which is an open
dense subset of Y ∩ (Ω× Σ).

(v) If π is a proper projection from Y to a linear subspace of Cn, then dimπ(Y ) =
dim Y .

By a holomorphic disc through a point p we mean an irreducible one-dimensional
complex analytic set Y in a neighbourhood U of p such that p ∈ Y and Y is the
image of a non-constant holomorphic map γ from a disc {ζ ∈ C : |ζ| < δ} to U . We
say that the disc is centred at p when γ(0) = p. The following result is essentially a
restatement of [7, Claim on p. 383]. It generalizes [8, Lem. 2.5], which states that a
holomorphic disc Y through a point z is contained in Sz, provided Y ⊂ X.

Lemma 2.2 Let X, p, %,V,U1 and U2 be as above. Suppose that Y is an irreducible
complex analytic subset of an open set in U2, of positive dimension k, and such that
Y ⊂ X. Then z ∈ Y implies Y ⊂ Sz.
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Proof Fix a point z0 ∈ Y . We shall show that Y ⊂ Sz0 . For simplicity of notation,
assume that z0 = 0. By Remark 2.1(iv), we may choose a neighbourhood Ω × Σ of
z0 such that Ω is a k-dimensional polydisc, and the projection π : Y ∩ (Ω× Σ)→ Ω
is proper and surjective. Let z ′ = (z ′1, . . . , z

′
k, z
′
k+1, . . . , z

′
n) be an arbitrary point in

Y ∩ (Ω×Σ), and let Lz ′ ⊂ Ω be the complex line segment through (z ′1, . . . , z
′
k) and 0

in Ω. Then Yz ′ := π−1(Lz ′) is an analytic subset of Y ∩(Ω×Σ), with a proper projec-
tion onto Lz ′ , and hence of dimension one, by Remark 2.1(v). We may assume that
Yz ′ is irreducible by keeping only one irreducible component of Yz ′ passing through
z ′ and z0. Then, by the Puiseux theorem (see, e.g., [11, Ch. II, §6.2]), there is a neigh-
bourhood Ω ′ of 0 ∈ Ω, such that Yz ′ ∩ (Ω ′ ×Σ) is a holomorphic disc centred at z0.
By [8, Lem. 2.5], Yz ′ ∩ (Ω ′×Σ) ⊂ Sz0 . It follows that the set Yz ′ ∩ (Ω ′×Σ)∩Sz0 con-
tains a non-empty open subset of Yz ′ , hence is of dimension dim Yz ′ , and so is not a
proper subset of Yz ′ , by Remark 2.1(ii). Thus Yz ′ ⊂ Sz0 and, in particular, z ′ ∈ Sz0 .
Consequently, Y ∩ (Ω×Σ) ⊂ Sz0 , because z ′ was arbitrary. Hence, by Remark 2.1(ii)
again, Y ⊂ Sz0 , as required.

Lemma 2.3 (cf. [8, Thm. 1.2], see also [7]) Let X, p, %,V,U1, and U2 be as above.
For a non-empty subset Y of U2, with Y ∩U1 6= ∅, define

Y 1 =
⋂

z∈Y∩U1

Sz and Y 2 =
⋂

w∈Y 1∩U1

Sw.

(i) Y 1 and Y 2 are complex analytic subsets of U2. If Y 1 ∩U1 6= ∅, then Y ∩U1 ⊂
Y 2 ∩U1.

(ii) Moreover, if Y is an irreducible positive-dimensional complex analytic subset of an
open set in U2, such that Y ⊂ X, then Y ∩U1 ⊂ Y 1 ∩U1.

(iii) If Y ∩U1 ⊂ Y 1 ∩U1, then Y 2 ⊂ Y 1 and Y 2 ∩U1 ⊂ X.

Proof (i) The Segre varieties Sz are complex analytic in U2, for z ∈ U1, hence so are
Y 1 and Y 2. By definition, z ∈ Y 2 if and only if z ∈ Sw for all w ∈ Y 1 ∩U1. Hence,
by (2.1), z ∈ Y 2 ∩U1 if and only if w ∈ Sz for all w ∈ Y 1 ∩U1. On the other hand,
z ∈ Y ∩U1 implies that w ∈ Sz for all w ∈ Y1, and so z ∈ Y 2.

(ii) Suppose now that Y is an irreducible positive-dimensional complex analytic
subset of an open set in U2, such that Y ⊂ X. Then, by Lemma 2.2, Y ⊂ Sz for every
z ∈ Y , and so Y ∩U1 ⊂

(⋂
z∈Y∩U1

Sz

)
∩U1 = Y 1 ∩U1.

(iii) Finally, assume that Y ∩ U1 ⊂ Y 1 ∩ U1. Then
⋂

z∈Y 1∩U1
Sz ⊂

⋂
z∈Y∩U1

Sz;
i.e., Y 2 ⊂ Y 1. For the proof of the last inclusion, let z ∈ Y 2 ∩U1 be arbitrary. Then
z ∈ Sw for every w ∈ Y 1 ∩U1, hence, by (2.1) again, w ∈ Sz for all w ∈ Y 1 ∩U1. In
particular, z ∈ Sz, since z ∈ Y 2 ⊂ Y 1. Therefore z ∈ X, by (2.2).

3 Topology of the Set of Points of Positive Complex Dimension

In this section we prove that Ad is closed in X, for any d ≥ 1. The openness of
the set of points of finite type in the hypersurface case was already established in [5,
Thm. 4.11] and later extended to smooth real analytic sets of arbitrary codimension
in [6]. Via the equivalence between the finiteness of the type at p and the property
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p /∈ A1, which we recall in Section A, D’Angelo proved in [6] the openness of X \
A1. The result was recently reproved in [8]. In the proof of Proposition 3.2, we
use Lemma 2.3 to replace complex analytic germs by their representatives in a fixed
open set (cf. [8]) and then show that their Hausdorff limit is contained in a complex
analytic set in X that has dimension at least d.

For a non-empty set E ⊂ Cn and a point p ∈ Cn, put

d(p, E) = inf
{

d(p, q) : q ∈ E
}
,

where d(p, q) is the Euclidean distance between p and q. Recall that U 1 being com-
pact, the space K(U 1) of closed subsets of U 1 equipped with the Hausdorff distance

dH(K1,K2) = min{r ≥ 0 : d(x1,K2), d(x2,K1) ≤ r for all (x1, x2) ∈ K1 × K2}

is a compact metric space (see, e.g., [13]).

Remark 3.1 Suppose that the sequence (K j)∞j=1 ⊂ K(U 1) converges to K in this

metric, with dH(K j ,K) ≤ 2− j . Then K is precisely the set of points p for which there
is a sequence (p j)∞j=1 with p j ∈ K j and d(p j , p) ≤ 2− j . In particular, if K j ⊆ L j

are closed subsets of U 1 with the sequence (K j) (resp. (L j)) converging to the set K
(resp. L), then K ⊆ L.

Proposition 3.2 Let X be a closed real analytic subset of an open set in Cn, and let Ad

be the set of points p in X such that Xp contains a complex analytic germ of dimension
d. Then Ad is closed in X for every d ≥ 1.

Proof Fix d ≥ 1, and let p0 ∈ X be a limit point of Ad. Then there exists a sequence
of d-dimensional complex analytic germs (Y j)p j ⊂ Xp j at points p j ∈ X such that
p0 = lim j→∞ p j . We restrict our considerations to neighbourhoods U1 and U2 of
p0, as discussed in Section 2. Without loss of generality, we may assume that the Y j

are irreducible.
One difficulty arising here is that the (Y j)p j may not simultanously admit rep-

resentatives in a fixed neighbourhood of p0. We can, however, replace the Y j by
irreducible complex analytic subsets of U2 by setting

Y 1
j =

⋂
z∈Y j∩U1

Sz and Y 2
j =

⋂
w∈Y 1

j∩U1

Sw.

Indeed, by Lemma 2.3, the Y 1
j and Y 2

j are complex analytic subsets of U2, Y j ⊂ Y 2
j

and Y 2
j ∩U1 ⊂ X. The first inclusion implies also that dim Y 2

j ≥ d, for all j, since
the Y j are d-dimensional. We may also assume that the Y 2

j are irreducible, by keeping
only one irreducible component of Y 2

j passing through p j . To simplify the notation,
from now on we denote Y 2

j by Y j . Since dim Y j ∈ {d, . . . , n−1} for all j, there exists
an integer d ′ ≥ d such that dim Y j = d ′ for infinitely many j. Let us then replace the
original sequence (Y j)∞j=1 by this infinite subsequence.



Tameness of Complex Dimension in a Real Analytic Set 727

By compactness of K(U 1), the sequence (Y j ∩U 1)∞j=1 contains an infinite sub-
sequence convergent in the Hausdorff metric to a set Y0 closed in U 1. Therefore,
without loss of generality, we may assume that

Y0 = limH(Y j ∩U 1),

and further that

(3.1) dH(Y j ∩U 1,Y0) ≤ 2− j

(by throwing out some terms of the sequence, if necessary). Notice that p0 =
lim j→∞ p j belongs to Y0, by Remark 3.1.

We will show that Y0 is contained in a complex analytic set of dimension at least d
contained in X. Set

Y 1
j =

⋂
z∈Y j∩U1

Sz, Y 1
0 =

⋂
z∈Y0∩U1

Sz, and Ỹ 1
0 = limH(Y 1

j ∩U 1),

where limH(Y 1
j ∩ U 1) is again the limit of (an infinite convergent subsequence of)

Y 1
j ∩U 1 in the sense of the Hausdorff metric on K(U 1). (Notice that replacing (Y j ∩

U 1)∞j=1 by its infinite convergent subsequence does not affect Y0.) We may further

assume that dH(Y 1
j ∩U 1, Ỹ 1

0 ) ≤ 2− j , as above.

We claim that Ỹ 1
0 ⊂ Y 1

0 . Indeed, there exist points {a1, . . . , ar} ⊂ Y0 such that
Y 1

0 =
⋂r

k=1 Sak , by compactness of U 2 and Remark 2.1(i). Therefore, there exist r

sequences (a j
k)∞j=1 such that a j

k ∈ Y j and lim j→∞ a j
k = ak, k = 1, . . . , r (see Re-

mark 3.1).
From the analytic dependence of Segre varieties Sz on the parameter z, we con-

clude that

limH

( r⋂
k=1

Sa j
k

)
⊂

r⋂
k=1

Sak = Y 1
0 ;

for if z ∈ limH
⋂r

k=1 Sa j
k
, we can find z j ∈

⋂r
k=1 Sa j

k
such that lim j→∞ z j = z, hence

%(z, ak) = lim
j
%(z j , a j

k) = 0

for each k ∈ {1, · · · , r}.
Also, since a j

k ∈ Y j , for every fixed j we have Y 1
j ⊂

⋂r
k=1 Sa j

k
.

From this we conclude that limHY 1
j ⊂ Y 1

0 , which proves the claim.

We now claim that Y0 ∩U1 ⊂ Y 1
0 ∩U1. Indeed, since the Y j ∩U1 are irreducible

positive-dimensional complex analytic sets in U1, and subsets of X, we have Y j∩U1 ⊂
Y 1

j ∩U1, by Lemma 2.3(ii). Therefore, by Remark 3.1, limH(Y j ∩U1) ⊂ limH(Y 1
j ∩

U1) = Ỹ 1
0 , and hence Y0 ∩U1 = limH(Y j ∩U1) ⊂ Y 1

0 ∩U1, by the previous claim. In
particular, the set Y 1

0 ∩U1 is not empty. Let

Y 2
0 =

⋂
z∈Y 1

0∩U1

Sz.
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Then Y 2
0 ⊂ U2 is a complex analytic set, such that Y 2

0 ∩U1 ⊂ X and dimp0 Y 2
0 ≥ d.

Indeed, since Y0 ∩ U1 ⊂ Y 1
0 ∩ U1, Lemma 2.3 implies that Y 2

0 ∩ U1 ⊂ X. Given
z ∈ Y0 ∩ U1, we have w ∈ Sz for every w ∈ Y 1

0 , by the definition of Y 1
0 . Hence

z ∈ Sw for every w ∈ Y 1
0 ∩U1, by (2.1), and so z ∈ Y 2

0 . Therefore Y0 ∩U1 ⊂ Y 2
0 . It

thus suffices to show that the Hausdorff dimension of (Y0)p0 is at least 2d ′. This is a
consequence of [15, Thm. 4.2], but one can also argue directly as follows.

Recall that, for every j ≥ 1, Y j is an irreducible d ′-dimensional complex analytic
subset of U2 (where d ′ ≥ d) passing through p j and such that Y j ∩U1 ⊂ X. By (3.1),
we have

(3.2) dH(Y j ∩U 1,Y j+k ∩U 1) < 2−( j−1).

Since lim j→∞ p j = p0, it follows that, for every δ = (δ1, . . . , δn) with δl > 0, all but
finitely many Y j have non-empty intersection with a polydisc

P(p0, δ) =
{

z = (z1, . . . , zn) ∈ Cn : |zl − p0l| < δl

}
.

For every j, there exist δ and a generic system of coordinates

z = (z1, . . . , zd ′ , zd ′+1, . . . , zn)

at p0, such that Y j ∩ P(p0, δ) has a proper and surjective projection onto the
(z1, . . . , zd ′)-variables (see Remark 2.1(iv)). By (3.2), we may choose a positive δ
and a system of coordinates z at p0 such that all but finitely many of the Y j ∩P(p0, δ)
simultaneously have proper and surjective projection onto the (z1, . . . , zd ′)-variables.
Therefore the same must be true for the Hausdorff limit Y0∩P(p0, δ), by Remark 3.1.
Thus the Hausdorff dimension of (Y0)p0 is at least 2d ′ ≥ 2d, and hence p0 ∈ Ad,
which completes the proof of the proposition.

4 Finiteness and Noetherianity in Analytic Families

In this section we prove two finiteness properties for intersections of elements in a
family of analytic sets that will be used in the proof of Theorem 1.4. We begin with
some basic facts about semi and subanalytic sets.

Recall that a subset E of a real analytic manifold M is called semianalytic if it is lo-
cally defined by finitely many real analytic equations and inequalities. More precisely,
for each p ∈ M, there is a neighbourhood U of p, and real analytic in U functions
fi , gi j , where i = 1, . . . , r, j = 1, . . . , s, such that

E ∩U =
r⋃

i=1

( s⋂
j=1
{x ∈ U : gi j(x) > 0 and fi(x) = 0}

)
.

A real analytic set is clearly semianalytic. A subanalytic subset E of a real analytic
manifold M is one that can be locally represented as the proper projection of a semi-
analytic set. More precisely, for every p ∈ M, there exist a neighbourhood U of p in
M, a real analytic manifold N, and a relatively compact semianalytic set Z ⊂ M × N
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such that E ∩U = π(Z), where π : M × N → M is the natural projection. In par-
ticular, semianalytic sets are subanalytic. For details on semi and subanalytic sets, we
refer the reader to [3].

The class of semianalytic (resp. subanalytic) sets is closed under natural topo-
logical operations: locally finite unions and intersections, set-theoretic differences,
complements, topological closures, and interiors of semianalytic (resp. subanalytic)
sets are semianalytic (resp. subanalytic). Subanalytic sets are furthermore closed
under the operation of taking proper projections to linear subspaces.

Remark 4.1 An important property of subanalytic sets is that the number of
connected components of fibres of a projection is locally bounded (see, e.g., [3,
Thm. 3.14]). If S is a relatively compact subanalytic subset of Rm × Rn, and D ⊂ Rm

is compact, then there is a positive integer kD such that the number of connected
components of the set π−1(x) is bounded above by kD for all x ∈ D, where π is the
restriction to S of the canonical projection Rm × Rn → Rm.

Lemma 4.2 Let S be a subanalytic subset of Cm × Cn. Let Ω1 and Ω2 be relatively
compact open subsets of Cm and Cn respectively, and let D1 ⊂ Cm and D2 ⊂ Cn be open
polydiscs such that D1 ⊂ Ω1 and D2 ⊂ Ω2. Suppose that for every point a ∈ D1, the set
Sa = {b ∈ Ω2 : (a, b) ∈ S} is a complex analytic subset of Ω2. Then there is a positive
integer N such that, for every a ∈ D1, the analytic set Sa ∩D2 has at most N irreducible
components.

Proof By Remark 2.1(i), it suffices to show that there is a positive integer N such that
for every a ∈ D1, the set (Sa ∩ D2)reg has at most N connected components. Using
Remark 4.1, the latter would be a consequence of the subanalyticity of the set

{(a, b) ∈ D1 × D2 : b ∈ (Sa ∩ D2)reg}.

Remark 2.1(iii) ensures that this set is precisely the set of pairs (a, b) in D1 × D2 for
which there is a natural number d and a choice of coordinate indices ( j1, . . . jd) ∈
{1, . . . , n}d such that there is a number ε > 0 small enough so that for all
(z j1 , . . . , z jd ) ∈ Cd with |z jl − b jl | < ε (l = 1, . . . , d) there is a unique b ′ =
(b ′1, . . . , b

′
n) satisfying b ′ ∈ Y ∩ B(b, ε) and b ′jl

= z jl (l = 1, . . . , d).
The set {(a, b) ∈ D1 × D2 : b ∈ (Sa ∩ D2)reg} is thus the proper projection (there

exists) of the complement of the proper projection (for all) of the complement of the
proper projection of a semianalytic set, and is therefore subanalytic.

Using this lemma, we can now prove the following proposition.

Proposition 4.3 Under the notation of the previous lemma, there is a positive integer
L such that for any set A ⊂ D1 there is an L-tuple (a1, . . . , aL) ∈ AL for which( ⋂

a∈A
Sa

)
∩ D2 = Sa1 ∩ · · · ∩ SaL ∩ D2.

Proof Given l ≥ 1 and (a1, · · · , al) ∈ (D1)l, let N(l; a1, · · · , al) denote the (n + 1)-
tuple of natural numbers whose k-th coordinate is the number of irreducible com-
ponents of dimension n− k + 1 of Sa1 ∩ · · · ∩ Sal ∩ D2.



730 J. Adamus, S. Randriambololona, and R. Shafikov

Applying Lemma 4.2 to the subanalytic set{
(a1, . . . , al, b) ∈ (Cm)l × Cn : b ∈ Sa1 ∩ · · · ∩ Sal

}
,

we conclude that the number of such components of any dimension is bounded
above independently of the choice of (a1, . . . , al) (but a priori not independently of
l). Hence N(l; a1, . . . , al) is well defined for all (a1, . . . , al) ∈ (D1)l, and the set

{N(l; a1, . . . , al) : (a1, . . . , al) ∈ (D1)l}

is a finite subset of Nn+1.
Let us order Nn+1 lexicographically. Observe that

N(l; a1, . . . , al) ≥lex N(l + 1; a1, . . . , al+1)

for any (a1, . . . , al+1) ∈ (D1)l+1. Indeed, by intersecting Sa1 ∩ · · · ∩ Sal with Sal+1

we may only decrease lexicographically the number of irreducible components: an
irreducible component Zµ of Sal+1 either contains all the irreducible components of
Sa1 ∩ · · · ∩ Sal , in which case our (n + 1)-tuple is not affected, or else there is an
irreducible component Wν of Sa1∩· · ·∩Sal , of dimension, say, k, such that Zµ∩Wν  
Wν . In the latter case, by Remark 2.1(ii), the set Zµ ∩Wν is of dimension strictly
smaller than k, and so the number of k-dimensional components in Sa1 ∩ · · · ∩ Sal+1

is strictly less than that in Sa1 ∩ · · · ∩ Sal .
Suppose for a contradiction that the number L from the proposition does not

exist. Then for every l ≥ 1, the set

Tl :=
{

(a1, . . . , al) ∈ Dl
1 : N(1; a1) >lex N(2; a1, a2) >lex · · · >lex N(l; a1, . . . , al)

}
is nonempty. Assume N(l) is the (lexicographic) maximum among the tuples
N(l; a1, . . . , al) as (a1, . . . , al) ∈ Tl, and let (bl

1, . . . , b
l
l) ∈ Tl be such that N(l) =

N(l; bl
1, . . . , b

l
l). It follows that

N(l) ≥lex N(l; bl+1
1 , . . . , bl+1

l ) >lex N(l + 1; bl+1
1 , . . . , bl+1

l+1) = N(l + 1),

for all l ≥ 1. Hence there exists a strictly decreasing infinite sequence of (n+1)-tuples

N(1) >lex N(2) >lex · · · >lex N(l) >lex · · · ,

which contradicts the fact that≥lex is a well-ordering of Nn+1.

For 1 ≤ d < n, and λ ∈ Λ(d, n), let

(4.1) πλ = πλ1,...,λd : Cn → Cd

be the canonical projection from Cn onto (its linear subspace spanned by) the vari-
ables zλ = (zλ1 , . . . , zλd ). Let zµ = (zµ1 , . . . , zµn−d ) be the (n − d)-tuple of the
remaining variables (that is, {1, . . . , n} = {λ1, . . . , λd} ∪ {µ1, . . . , µn−d}, with
1 ≤ µ1 < · · · < µn−d ≤ n).
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Corollary 4.4 Under the notation of Lemma 4.2, there exists a positive integer κ such
that for every non-empty A ⊂ D1 and any λ, the number of irreducible components of a
fibre of πλ|(⋂a∈A Sa∩D2) is bounded above by κ.

Proof Use Proposition 4.3 to replace
⋂

a∈A Sa ∩D2 by some Sa1 ∩ · · · ∩ SaL and then
apply Lemma 4.2 to the sets{

(a1, . . . , aL, zλ, zµ) ∈ (DL
1 × Cd)× Cn−d : z ∈ Sa1 ∩ · · · ∩ SaL ∩ D2

}
.

5 Proofs of the Main Theorems

We first prove Theorem 1.4, from which the semianaliticity in Theorem 1.1 will fol-
low.

5.1 Proof of Theorem 1.4

Fix d ≥ 1. We give the proof of Theorem 1.4 for this given dimension.

(i)⇒ (ii). Let p ∈ Ad be an arbitrary point, and let U1 and U2 be neighbourhoods
of p as defined in Section 2. Then there exists a complex analytic set Y in a neigh-
bourhood of p, of dimension d, which is contained in X and passes through p. We
may assume that Y is irreducible, and hence, by Lemma 2.3(ii),

⋂
z∈Y∩U1

Sz contains
Y ∩U1.

Let (z1, . . . , zn) be the coordinates in Cn. We will show that, for every ε > 0 and
κ > 0, there exists λ ∈ Λ(d, n) for which there is a κ-grid Gκλ with d-dimensional
base zλ such that Gκλ ⊂ B(p, ε).

Fix ε > 0. By Remark 2.1(iv) there are a small polydisc D ⊆ B(p, ε) ∩U1 such
that Y ∩D is a complex manifold and λ = (λ1, . . . , λd) ∈ Λ(d, n) such that Y ∩D is
the graph of a holomorphic mapping in variables zλ. In particular, any set

{zν ∈ πλ(D), ν = (ν1, . . . , νd) ∈ {1, . . . , κ + 1}d :

for all ν, ν ′, j, ν j = ν ′j ⇔ πλ j (zν) = πλ j (zν ′)}

is pulled back by πλ|Y∩D to a set

Gκλ =
{

pν : ν = (ν1, . . . , νd) ∈ {1, . . . , κ + 1}d
}

satisfying Definition 1.3(ii) (πλ and πλ j are as in (4.1)). But as noted earlier,⋂
z∈Y∩U1

Sz ⊃ Y ∩U1,

which shows that Gκλ also satisfies (i) of Definition 1.3.

(ii)⇒ (i). Let q ∈ X ∩V be arbitrary, and let U1 and U2 be neighbourhoods of q
as defined in Section 2. Let κ ≥ 1 be an upper bound for the number of irreducible
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components of any fibre of
⋂

z∈Z Sz ∩ U2 for any projection πλ, λ ∈ Λ(d, n), as Z

ranges over the subsets of U1. Corollary 4.4 applied to the set {(a, b) ∈ Cn × Cn :
%(a, b) = 0} ensures that this upper bound is finite.

Let p ∈ U1 ∩ X. Suppose that for any ε > 0, there exists a κ-grid with d-di-
mensional base zλ for some λ = (λ1, . . . , λd),

Gκλ =
{

pν : ν = (ν1, . . . , νd) ∈ {1, . . . , κ + 1}d
}

contained in B(p, ε). Without loss of generality we may assume that the open ε-ball
B(p, ε) is contained in U1.

Let Y 1 =
⋂

z∈Gκ
λ

Sz and Y 2 =
⋂

z∈Y 1∩U1
Sz. By Lemma 2.3(i), Gκλ ⊂ Y 2; moreover,

Y 2 ⊂ X by Definition 1.3(i) and Lemma 2.3(iii).
For λ as above, we denote by λ(δ) the δ-tuple (λ1, . . . , λδ) ∈ Λ(δ, n) of the first

δ components of λ, δ ∈ {1, . . . , d}. We will consider the fibres π−1
λ(δ) (πλ(δ) (pν)) at

points pν ∈ Gκλ, with the convention that π−1
λ(0) (πλ(0) (pν)) = V .

Let us prove by descending induction on δ ∈ {0, . . . , d} that for each pν ∈ Gκλ the
fibre

π−1
λ(δ)

(
πλ(δ) (pν)

)
∩ Y 2

contains an irreducible component of dimension≥ d−δ that passes through a pν ′ ∈
Gκλ with πλ(δ) (pν) = πλ(δ) (pν ′) (the latter equality being vacuously true if δ = 0).
• For δ = d, it suffices to take any irreducible component of π−1

λ (πλ(pν)) ∩ Y 2

passing through pν (which exists, since pν ∈ Y 2).
• Suppose the result holds for δ + 1. Then the collection of subsets of V{

π−1
λ(δ+1) (πλ(δ+1) (pµ)) ∩ Y 2 : pµ ∈ Gκλ, πλ(δ) (pµ) = πλ(δ) (pν)

}
has κ + 1 pairwise disjoints elements (one for each πλ(δ+1) (pµ)), each containing
an irreducible component of dimension ≥ d − (δ + 1) and each contained in
π−1
λ(δ) (πλ(δ) (pν)) ∩ Y 2. By the definition of κ and the pigeonhole principle, there is

an irreducible component Xν of π−1
λ(δ) (πλ(δ) (pν)) ∩ Y 2 and two indices µ and µ ′ such

that πλ(δ+1) (pµ) 6= πλ(δ+1) (pµ ′), and there is an irreducible component Xµ (resp. Xµ ′)
of π−1

λ(δ+1) (πλ(δ+1) (pµ)) (resp. of π−1
λ(δ+1) (πλ(δ+1) (pµ ′))) of dimension≥ d− (δ + 1) with

Xµ ⊂ Xν and Xµ ′ ⊂ Xν .

Since Xµ ∩ Xµ ′ = ∅, we get dim Xν ≥ d − δ, for else Xν would be the union

of proper analytic subsets Xµ, Xµ ′ and Xν \ (Xµ ∪ Xµ ′), with dim Xµ = dim Xµ ′ =
dim Xν , contradicting the irreducibility of Xν (Remark 2.1(ii)).

The case δ = 0 of the induction provides a point pν ′ ∈ B(p, ε) ∩ Ad. Therefore,
p is an accumulation point of Ad, and hence p ∈ Ad by Proposition 3.2.

Finally, for any point q ∈ V , there is a pair of neighbourhoods U q
1 b U q

2 b V such
that for every w ∈ U q

1 , Sw is a complex analytic subset of U q
2 of dimension at least n−1

(cf. Section 2). Since V is relatively compact in the domain of convergence of %, the
set X∩V can be covered by a finite collection of open sets U qα

1 , α = 1, . . . ,N. Taking
the maximum value among the κ associated with each U qα

2 will give the uniform κ,
as claimed in Theorem 1.4.



Tameness of Complex Dimension in a Real Analytic Set 733

5.2 Proof of Theorem 1.1

Theorem 1.4 gives us a description of Ad, d ≥ 1, as a subanalytic set. This description
will be shown to actually define a semianalytic set, which will prove Theorem 1.1.

Let p ∈ X be arbitrary. Let %(z, z) be any defining function of X given by a conver-
gent power series in a polydisc neighbourhood V of p. Let κ be as in Theorem 1.4.
Define

Σ1 =
{

(z1, . . . , zκ+1) ∈ V κ+1 : %(zµ, zν) = 0, 1 ≤ µ, ν ≤ κ + 1
}
.

Then Σ1 is a real analytic subset of V κ+1. Let

∆1 =
{

(z1, . . . , zκ+1) ∈ (Cn)κ+1 : z1 = · · · = zκ+1

}
,

and consider the set

S1 = Σ1 \ {(z1, . . . , zκ+1) ∈ V κ+1 : zν = zν ′ for some ν 6= ν ′} ∩ ∆1.

The closure of a semianalytic set being semianalytic, S1 is a semianalytic subset of
the diagonal ∆1. One easily checks that the projection to the first coordinate of a
semianalytic subset of the diagonal is itself semianalytic. But A1 ∩V is precisely the
projection of S1 to the first coordinate by Theorem 1.4.

Similarly, for d ≥ 2, define

Σd =
{

(z1,...,1, . . . , zκ+1,...,κ+1) ∈ V (κ+1)d

:

%(zν , zν ′) = 0, ν, ν ′ ∈ {1, . . . , κ + 1}d
}
,

and for every λ = (λ1, . . . , λd) ∈ Λ(d, n), put

Θd
λ =

{
(z1,...,1, . . . , zκ+1,...,κ+1) ∈ V (κ+1)d

: for all j ∈ {1, . . . , d}

and (ν, ν ′) ∈ ({1, . . . κ + 1}d)2 , πλ j (zν) = πλ j (zν ′)⇔ ν j = ν ′j
}
.

Then Σd ∩
⋃
λ∈Λ(d,n) Θd

λ is a semianalytic subset of V (κ+1)d

. Let

∆d = {(z1,...,1, . . . , zκ+1,...,κ+1) ∈ V (κ+1)d

: z1,...,1 = · · · = zκ+1,...,κ+1}

and consider the set

Sd =
(

Σd ∩
⋃

λ∈Λ(d,n)
Θd
λ

)
\ T ∩∆d,

where

T = {(z1,...,1, . . . , zκ+1,...,κ+1) ∈ V (κ+1)d

: zν = zν ′ for some ν 6= ν ′}.

As above, Sd is a semianalytic subset of the diagonal ∆d, and hence its projection to
the first coordinate, which is precisely Ad∩V (by Theorem 1.4), is itself semianalytic.

Finally, suppose that X is real algebraic. Then % is a polynomial, and hence the sets
Σd above are all semialgebraic. It follows that the Ad are semialgebraic, for all d ∈ N,
which completes the proof of Theorem 1.1.
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A Appendix: Points of Infinite Type

In this section we review the basics of D’Angelo’s theory of points of finite type. As
before, let X denote a closed real analytic subset of an open set in Cn. Our goal is to
clarify the definition of type in the case that X is not a smooth hypersurface, and to
give a condensed but self-contained proof of the fact that the subset of X of points
of infinite type coincides with A1 (cf. [6, §3.3.3, Thm. 4]). We were motivated, in
part, by the claims of incompleteness of the D’Angelo argument (see [8]). All the
proofs presented in this section (modulo minor technical modifications) originate in
D’Angelo [5, 6].

A.1 Order of Contact of a Holomorphic Ideal

Let Op = nOp denote the ring of germs of holomorphic functions at a point p =
(p1, . . . , pn) ∈ Cn. By the Taylor expansion isomorphism, we may identify nOp with
the ring C{z − p} of convergent power series in z − p, where z = (z1, . . . , zn) is a
system of n complex variables. Let mp denote the maximal ideal of the local ring nOp.
Let Holp denote the set of germs of (non-constant) holomorphic mappings from a
neighbourhood of 0 in C to a neighbourhood of p in Cn (sending 0 to p). Given
f = ( f1, . . . , fn) ∈ C{ζ}n, we denote by ν( f ) the order of vanishing of f at 0; i.e.,
ν( f ) := max{k ∈ N : f j ∈ mk, j = 1, . . . , n} if f 6= 0 in C{ζ}n, and ν(0) := ∞,
where m is the maximal ideal of C{ζ}.

Definition A.1 ([5, Def. 2.6]) Given a proper ideal I in Op, define

τ∗(I) = sup
γ∈Holp

inf
g∈I

ν(g ◦ γ)

ν(γ)
;

K(I) = inf{k ∈ N : mk
p ⊂ I};

D(I) = dimC(Op/I) (as a complex vector space).

The following is a simplified variant of [5, Thm. 2.7].

Lemma A.2 Suppose that I is a proper ideal in Op. Then

τ∗(I) ≤ K(I) ≤ D(I).

Moreover, each of the above constants is finite if and only if the zero-set germ of I is the
singleton {p}.

Proof Let V(I) denote the zero-set germ of I. By the complex analytic Nullstellensatz
(see, e.g., [11, Ch. 3, §4.1]), V(I) = {p} if and only if

√
I = mp, or equivalently

(by Noetherianity of Op), I contains a power of the maximal ideal mp. Hence V(I)
equals {p} precisely when both K(I) and D(I) are finite. On the other hand, V(I) !
{p} if and only if there exists a 1-dimensional irreducible complex-analytic germ
Y p at p such that every g ∈ I vanishes on Y p. Choosing γ ∈ Holp the Puiseux
parametrization of Y p (see [11, Ch. II, §6.2]), we see that the latter is equivalent to
g ◦ γ = 0 for every g ∈ I, that is, τ∗(I) =∞.
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Assume then that V(I) = {p}, or equivalently, that I contains a power of the
maximal ideal mp. Observe that I ⊂ J implies τ∗(I) ≥ τ∗( J). Hence, if I ⊃ mk

p,
then τ∗(I) ≤ τ∗(mk

p). The inequality τ∗(I) ≤ K(I) thus follows from the fact that
τ∗(mK

p ) = K (as mK
p can be generated by monomials, all of degree K).

Suppose now that mk
p 6⊂ I. Then there is a multi-index β ∈ Nn of length |β| = k,

such that (z − p)β /∈ I. It follows that (z − p)α /∈ I for every α = (α1, . . . , αn) ∈ Nn

satisfying α j ≤ β j , j = 1, . . . , n. Since there are at least |β| + 1 = k + 1 of such α’s,
then Op/I contains at least k + 1 elements linearly independent over C. This proves
the inequality K(I) ≤ D(I).

A.2 The Type of a Real Analytic Principal Ideal

Let OR
p = nO

R
p denote the ring of real-valued real analytic germs at a point p =

(p1, . . . , pn) ∈ Cn. Let %(z, z̄) =
∑

α,β∈Nn cαβ(z − p)α(z − p)β be a power series

representation of %(z, z̄) ∈ OR
p , convergent in an open neighbourhood of p in Cn. We

define the type of % at p as

∆(%, p) = sup
γ∈Holp

ν(% ◦ γ)

ν(γ)
,

where the order of vanishing is taken with respect to the maximal ideal (Re(ζ), Im(ζ))
of the ring R{Re(ζ), Im(ζ)} of real analytic germs at 0 in C ∼= R2. It is readily seen
that ∆(u·%, p) = ∆(%, p) for any invertible u ∈ OR

p . Hence, since OR
p is a UFD, we

may speak of the type ∆(I, p) of a principal ideal I = (%) in OR
p .

Let X be a smooth real analytic hypersurface in an open neighbourhood U of a
point p in Cn. Then, after shrinking U if necessary, there is a unique (up to mul-
tiplication by an invertible u ∈ OR

p ) real analytic % ∈ OR
p with d%(p) 6= 0 and

X = {z ∈ U : %(z, z̄) = 0}. One defines (see [5, Def. 2.16], [6, §3.3.3]) the type
of X at p as ∆(X, p) := ∆(%, p). However, the type of a real analytic set X is not
well defined if X is not a hypersurface. Indeed, if the real codimension of X at p is
greater than 1, there is no canonical choice of a single defining function, and given
two distinct defining functions %1, %2 for X in a neighbourhood of p there need not
exist an invertible u with %2 = u · %1. Consequently, the family of ideals I(%,U , p)
associated with Xp (see below) is not an invariant of Xp, but only of the principal
ideal (%) · OR

p . (Thus D’Angelo’s [6, §3.3.2, Prop. 5] only applies to smooth real
hypersurfaces.) Nonetheless, we can state the following definition.

Definition A.3 Let X be a closed real analytic subset of an open set in Cn, and let
%(z, z̄) be any real analytic function in a neighbourhood U of a point p ∈ X satisfying
X ∩ U = {z ∈ U : %(z, z̄) = 0}. We say that p is a point of finite type of X, when
∆(%, p) <∞. Otherwise, p is called a point of infinite type of X.

Remark A.4 By Proposition A.8, the notion of a point of finite type is well de-
fined, i.e., independent of the choice of a defining function. Indeed, if %1 and %2 are
two real analytic functions defining X in a neighbourhood of a point p ∈ X, then
∆(%1, p) =∞ if and only if ∆(%2, p) =∞, because both equalities are equivalent to
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Xp containing a positive-dimensional complex analytic germ.

A.3 Holomorphic Decomposition

Consider %(z, z̄) =
∑
|α|+|β|≥1 cαβ(z− p)α(z − p)β a real analytic function vanishing

at p, with the power series convergent in the polydisc {z : |z j − p j | < δ j}. Let
δ = (δ1, . . . , δn), and let 0 < t < 1. One can associate with % functions

h(z) = 4
∑
|α|≥1

cα0(z − p)α,

f β(z) =
∑
|α|≥1

cαβ(tδ)β(z − p)α + (z − p)β(tδ)−β ,

gβ(z) =
∑
|α|≥1

cαβ(tδ)β(z − p)α − (z − p)β(tδ)−β ,

for all β ∈ Nn, |β| ≥ 1. It is easy to see that h(z) and all the f β(z), gβ(z) are holo-
morphic in the polydisc {z : |z j − p j | < tδ j}, and that ‖ f (z)‖2 =

∑
|β|≥1 | f β(z)|2,

‖g(z)‖2 =
∑
|β|≥1 |gβ(z)|2 are real analytic in the same polydisc. One may thus con-

sider f = ( f β)|β|≥1 and g = (gβ)|β|≥1 as holomorphic functions with values in the
Hilbert space l2. Moreover, % admits a holomorphic decomposition of the form

(A.1) 4%(z, z̄) = 2Re(h(z)) + ‖ f (z)‖2 − ‖g(z)‖2.

For a unitary transformation U : l2 → l2, consider an ideal I(%,U , p) in Op generated
by h(z) and by the components f β(z)−

∑
σ∈Nn uβσgσ(z) of f −U (g), where uβσ are

the entries of the (matrix of) U .

Lemma A.5 (cf. [5, Thm. 3.5]) The following inequality holds:

∆(%, p) ≤ 2 sup
U
τ∗
(

I(%,U , p)
)
,

where the supremum is taken over all unitary transformations U : l2 → l2.

Proof Suppose that γ ∈ Holp is such that ν(% ◦ γ) > 2k for some integer k ≥ 1.
It suffices to find a unitary U : l2 → l2 for which τ∗(I(%,U , p)) > k/ν(γ). We have
J2k(% ◦ γ) = 0, where, for a germ f ∈ R{x, y}, Js( f ) denotes the s-jet of f , that
is, the image of f under the homomorphism Js : R{x, y} → R{x, y}/(x, y)s+1 of
R{x, y}-modules. For simplicity of notation assume that p = 0. Then

%(γ(ζ), γ(ζ)) =
( ∑
|α|≥1

cα0γ(ζ)α +
∑
|β|≥1

c0βγ(ζ)
β
)

+
∑
|α|,|β|≥1

cαβγ(ζ)αγ(ζ)
β
.

Since the bracket on the right-hand side of this equation contains only pure terms
and all the other (non-zero) terms contain positive powers of both ζ and ζ̄ , it follows
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from J2k(% ◦ γ) = 0 that the 2k-th jet of the bracket is zero. The content of the
bracket is precisely 2Re(h◦γ), hence J2k(h◦γ) = 0, and consequently J2k(‖ f ◦γ‖2−
‖g ◦ γ‖2) = 0 by (A.1). One checks by direct computation that the latter implies
‖ Jk( f ◦γ)‖2 = ‖ Jk(g ◦γ)‖2. Then, by Lemma A.6, there is a unitary U : l2 → l2 such
that Jk( f ◦γ)−U ( Jk(g◦γ)) = 0. Since Jk( f ◦γ)−U ( Jk(g◦γ)) = Jk[( f −U (g))◦γ],
it follows that ν(( f β−

∑
σ∈Nn uβσgσ)◦γ) > k for all |β| ≥ 1. Therefore ν(F ◦γ) > k

for every generator F of I(%,U , p), which proves τ∗(I(%,U , p)) > k/ν(γ).

Lemma A.6 (cf. [6, §3.3.1, Prop. 4]) Let F,G : B → l2 be holomorphic mappings on
an open ball in Cq, with ‖F‖2 = ‖G‖2. Suppose there exists k ∈ N such that all the
components of F and G are polynomials of degree at most k. Then there is a unitary
operator U : l2 → l2 satisfying F = U (G).

Proof Write F =
∑

Fαzα, G =
∑

Gαzα. By expanding and equating the norms
squared, one obtains relations

(A.2) (Fα, Fβ) = (Gα,Gβ)

for all multi-indices α, β, where ( · , · ) denotes the inner product in l2. Since all the
components of F and G are polynomials of degree at most k, it follows that span(Fα)
and span(Gα) are finite-dimensional vector spaces. Moreover, by (A.2), they are of
the same dimension. Hence one can define U : span(Gα) → span(Fα) by setting
U (Gα) = Fα on a maximal linearly independent set. Then U is a well-defined linear
transformation and an isometry from span(Gα) to span(Fα). By defining U to be an
isometry from the orthogonal complement of span(Gα) to the orthogonal comple-
ment of span(Fα), one obtains an operator with the required properties.

Remark A.7 We are indebted to the anonymous referee for pointing out a mistake
in an earlier version of the above lemma. In fact, the mistake can be traced back
to [6, §3.3.1, Prop. 4], where it is not assumed that F and G are polynomial. As
it turns out, without this assumption one cannot guarantee that the dimensions of
span(Fα) and span(Gα) are the same and so are the dimensions of their orthogonal
complements. This can be seen readily if one sets, for example, F = (z, z2, z3, . . . )
and G = (0, z, z2, z3, . . . ). In the general case, one can still prove that there exists an
isometry U (but not necessarily unitary) such that F ⊕ 0 = U (G) or G⊕ 0 = U (F),
where 0 is a certain (possibly infinite) vector of zeros.

A.4 The Equivalence

Proposition A.8 (cf. [6, §3.3.3, Thm. 4]) Let X be a closed real analytic subset of an
open set in Cn, defined in a neighbourhood of a point p ∈ X by the vanishing of a real
analytic function %(z, z̄) =

∑
α,β cαβ(z− p)α(z − p)β . Then ∆(%, p) <∞ if and only

if the germ Xp contains no positive-dimensional complex analytic germ.

Proof We follow the argument of Lempert [10]. Suppose Xp contains a 1-dimen-
sional complex-analytic germ Y p. Choosing γ ∈ Holp the Puiseux parametrization
of (an irreducible component of) Y at p, we get % ◦ γ = 0, hence ∆(%, p) =∞.
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Conversely, assume that Xp contains no positive-dimensional complex germs and,
for a proof by contradiction, suppose that ∆(%, p) =∞. Then, by Lemma A.5, there
exists a sequence (U j) j≥1 of unitary matrices for which

(A.3) lim
j→∞

τ∗
(

I(%,U j , p)
)

=∞.

Denoting by (U j)∗ the adjoint of U j , we have, for every j,

(A.4) I(%,U j , p) =
(

h, f −U j(g)
)
· Op =

(
h, f −U j(g), (U j)∗( f )− g

)
· Op,

since (U j)∗ = (U j)−1 and ideals in Op are closed in the topology of coefficient-wise
convergence (see, e.g., [9, Thm. 6.3.5]). By (A.3) and Lemma A.2, it follows that

(A.5) lim
j→∞

D
(

I(%,U j , p)
)

=∞.

The entries u j
βσ of every U j with respect to any complete orthonormal set are

bounded in absolute value by 1. Hence, it can be assumed that, for all β, σ ∈ Nn, the
sequence (u j

βσ) j≥1 has a limit, say, u∞βσ . Denote by U∞ the limit operator (u∞βσ), and
let (U∞)∗ = (ũ∞βσ) denote its adjoint.

Let Y p be the zero-set germ of the ideal J = (h, f −U∞(g), (U∞)∗( f )− g) · Op.
The operator norms of U∞ and of (U∞)∗ are less than or equal to 1 (however, U∞

need not be unitary). Therefore, for every z in a (sufficiently small) representative of
Y p, we have∥∥ f (z)

∥∥ =
∥∥U∞(g(z))

∥∥ ≤ ∥∥g(z)
∥∥ =

∥∥ (U∞)∗( f (z))
∥∥ ≤ ∥∥ f (z)

∥∥ .
Thus Y p ⊂ Xp, by (A.1), and hence Y p is the germ of the singleton {p}, by assump-
tion. Consequently D( J) <∞, by Lemma A.2; say, D( J) = d.

Now, by noetherianity of Op, there exists N ∈ N such that

J =
(

h, f β −
∑
σ

uβσgσ, gβ −
∑
σ

ũβσ f σ : |β| ≤ N
)
.

Set
I j =

(
h, f β −

∑
σ

u j
βσgσ, gβ −

∑
σ

ũ j
βσ f σ : |β| ≤ N

)
,

where ũ j
βσ are the entries of (U j)∗. By the Banach–Steinhaus Theorem, in a suffi-

ciently small neighbourhood of p, all f β −
∑

σ u j
βσgσ (resp. gβ −

∑
σ ũ j

βσ f σ) con-
verge uniformly to f β −

∑
σ uβσgσ (resp. to gβ −

∑
σ ũβσ f σ) as j → ∞. Hence, by

the upper semi-continuity of D(I) = dimC Op/I as a function of I ([14, Ch. II, Prop.
5.3]), we have D(I j) ≤ d for j large enough. On the other hand,

I j ⊂
(

h, f β −
∑
σ

u j
βσgσ, gβ −

∑
σ

ũ j
βσ f σ : β ∈ Nn

)
= I(%,U j , p),

where the equality follows from (A.4). Therefore, D(I(%,U j , p)) ≤ D(I j) ≤ d, which
contradicts (A.5).
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