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AN INDUCTIVE ANALYTIC CRITERION FOR FLATNESS
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(Communicated by Lev Borisov)

Abstract. We present a constructive criterion for flatness of a morphism of
analytic spaces ϕ : X → Y (over K = R or C) or, more generally, for flatness
over OY of a coherent sheaf of OX -modules F . The criterion is a combination
of a simple linear-algebra condition “in codimension zero” and a condition “in
codimension one” which can be used together with the Weierstrass preparation
theorem to inductively reduce the fibre-dimension of the morphism ϕ.

1. Introduction

The main result of this article is a constructive criterion for flatness of a mor-
phism of analytic spaces ϕ : X → Y (over K = R or C) or, more generally, for
flatness over OY of a coherent sheaf of OX -modules F .

In the special case that X = Y and ϕ = idX (the identity morphism of X), our
criterion reduces to the following “linear algebra criterion”. In a neighbourhood of
a point a ∈ X, an OX -module F can be presented as

Op
X

Φ−→ Oq
X −→ F −→ 0,

where Φ is given by multiplication by a q × p-matrix of analytic functions. Let
r = rankΦ(a). Then Fa is OX,a-flat if and only if all minors of order r + 1 of Φ
vanish near a.

Our flatness criterion, in general, is a combination of a condition “in codimension
zero” similar to the preceding and a condition “in codimension one” which can be
used together with the Weierstrass preparation theorem to inductively reduce the
fibre-dimension of the morphism ϕ.

To justify the criterion, we use it to give natural constructive proofs of several
classical results — Hironaka’s existence of the local flattener [7], Douady’s openness
of flatness [4], and Frisch’s generic flatness theorem [5]. The proofs are essentially
a mix of linear algebra and appropriate applications of the Weierstrass preparation
theorem.

For example, in the case X = Y , the linear algebra criterion above provides
an immediate construction of the local flattener of F at a (i.e., the largest germ
of an analytic subspace T of X at a such that Fa is OT -flat). We can simply
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take OT = OX/I, where the ideal I is generated by the minors of order r + 1 of
Φ. Hironaka’s local flattener, in general, can be described using a similar linear
algebra construction and the Weierstrass preparation theorem.

Algebraic formulation of the flatness criterion. Let ϕ : Z → W and λ : T → W
denote morphisms of analytic space-germs, where W is regular, and let F denote
a finite OZ-module. We are concerned with OT -flatness of the module F ⊗̃OW

OT ,
where ⊗̃OW

denotes the analytic tensor product; i.e., the tensor product in the
category of local analytic OW -algebras. (For a review of the analytic tensor prod-

uct and its right-derived functor T̃or, which is used below in the proof of Lemma
3.2, see [1, § 2] or [6, § 2].) Via the embedding (φ, idZ) : Z → W × Z and
the natural projection π : W × Z → W , we can view F as an OW×Z-module
and therefore as an OW -module. Via an embedding Z ↪→ Km

0 we can also re-
place Z by K

m
0 without changing the OW -module structure of F . In particu-

lar, then OZ = K{x} = K{x1, . . . , xm}, OT = R/J for an appropriate ideal
J in R := K{y} = K{y1, . . . , yn}, and OW×Z = R{x} := K{y, x1, . . . , xm}.
Let A := OW×Z . Let m denote the maximal ideal (y1, . . . , yn) of R, and let
n = m + (x1, . . . , xm) ⊂ A. Then n is the maximal ideal of A. Given a power
series f = f(y, x) ∈ A, we denote by f(0) or by f(0, x) its evaluation at y = 0, i.e.,
the image of f under the homomorphism A → A(0) := A⊗̃RR/m of R-modules.
Similarly, given an A-submodule M of Aq, we denote by M(0) the evaluation of M
at y = 0, i.e., M(0) = {m(0) ∈ A(0)q : m ∈ M} . In particular, A(0) ∼= K{x}.

We are thus interested in flatness of F ⊗̃RR/J over R/J , where F is a finitely
generated A-module and J is an ideal in R.

Theorem 1.1. Let R,A, F and J be as above. Then:
(A) There exist g ∈ A, l ∈ N and a homomorphism ψ : Al → F of A-modules

such that g(0, x) �= 0, g · F ⊂ imψ and kerψ ⊂ m ·Al.
(B) F ⊗̃RR/J is a flat R/J-module if and only if, for any g, l and ψ as in (A),

the following two conditions hold:
(1) kerψ ⊂ J ·Al;
(2) (F/imψ)⊗̃RR/J is a flat R/J-module.

Remark 1.2. The above theorem allows one to study flatness of a module F by
repeated reduction of the fibre-dimension over R. Indeed, consider g and ψ as in
(A). First suppose that g(0, 0) = 0. Since g(0, x) �= 0, we can apply the Weierstrass
division theorem (after a generic linear coordinate change in x) to conclude that
A/(g · A) is a finite R{x̃}-module, where x̃ = (x1, . . . , xm−1). Then F/imψ is a
finite R{x̃}-module too, since g ·F ⊂ imψ. On the other hand, if g(0, 0) �= 0 (which
is the case when the number of x-variables is 0), then condition (2) of (B) in the
theorem is vacuous and no fibre dimension reduction is needed.

Proof of Theorem 1.1(A). Consider a presentation of F as an A-module

(1.1) Ap Φ−→ Aq Ψ−→ F → 0 .

By applying ⊗̃RR/J and ⊗̃RR/m to (1.1), we get presentations

(1.2) Ap/J ·Ap ΦJ−→ Aq/J ·Aq ΨJ−→ F ⊗̃RR/J → 0

and

(1.3) Ap/m·Ap Φm−→ Aq/m·Aq Ψm−→ F ⊗̃RR/m → 0
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of F ⊗̃RR/J and F ⊗̃RR/m respectively. Notice that identifying Φ with a matrix
(with entries in A), Φm becomes the matrix with entries obtained by evaluating the
corresponding entries of Φ at y = 0.

Let rm := rank (Φm). Choose an ordering of the columns and rows of Φ so that
Φ can be written in block form as

(1.4) Φ =

[
α β
γ δ

]
,

where the matrix α is of size rm × rm and (detα)(0) = (detα)(0, x) �= 0 in A(0).
Let α# denote the adjoint matrix of α, i.e., an rm × rm matrix with α# · α =

α · α# = (detα) · Idrm .
Now, take g := detα, l := q−rm, and let ψ be the restriction of Ψ : Arm⊕Al → F

to {0}rm ⊕ Al ∼= Al. Then g(0, x) �= 0. The condition g · F ⊂ imψ is equivalent
to saying that, for every vector (�, σ) ∈ Arm ⊕ Al, there exists σ′ ∈ Al such that
Ψ(g · (�, σ)) = Ψ((0, σ′)) or, equivalently, that g · Aq ⊂ kerΨ + ({0}rm ⊕ Al) =
imΦ + ({0}rm ⊕Al). But the latter follows from the fact that g ·Arm ⊂ imα.

Finally, by the choice of ψ, σ ∈ kerψ if and only if (0, σ) ∈ imΦ ∩ ({0}rm ⊕Al).
Then (0, σ) = Φ((ξ, η)) for some (ξ, η) ∈ Arm ⊕ Ap−rm with αξ + βη = 0. By the
choice of rm, every row of [γ, δ] is an A(0)-linear combination of the rows of [α, β]
modulo m. Hence αξ+βη = 0 implies that γξ+δη ∈ m ·Al, i.e., that σ ∈ m ·Al. �

Theorem 1.1(B) is the main result of this article. We will prove it in Section 3.

Remark 1.3. Throughout the paper we will use the fact that the entries of the
matrix g ·δ−γ ·α# ·β are the (rm+1)× (rm+1) minors of Φ. This is an immediate
consequence of the following matrix identity: For any q × p block matrix (1.4),
where α is of size r × r,

(1.5) g · Φ =

[
α 0
γ Idq−r

]
·
[
g · Idr α# · β

0 g · δ − γ · α# · β

]
,

where g = detα.

2. Applications: local flattener, openness of flatness,

generic flatness

Theorem 2.1 (Hironaka’s local flattener [7]). Let ϕ : Z → W be a morphism of
analytic space-germs, where W is regular. Let F be a finite OZ-module. Then there
exists a unique analytic subgerm P of W (i.e., a unique local analytic K-algebra
OP which is a quotient of OW ) such that:

(1) F ⊗̃OW
OP is OP -flat.

(2) Let λP : P → W denote the embedding. Then, for every morphism λ : T →
W of germs of analytic spaces such that F ⊗̃OW

OT is OT -flat, there exists
a unique morphism μ : T → P such that λ = λP ◦ μ.

Remark 2.2. Suppose that λ : T → W is a morphism such that F ⊗̃OW
OT is

OT -flat. Since flatness is preserved by base change (see [7, Prop. 6.8]), it follows
that (F ⊗̃OW

OT )⊗̃OT
S is S-flat, for every subring S of OT . In particular, iden-

tifying OW / kerλ∗ with imλ∗, we get that F ⊗̃OW
(OW / kerλ∗) ∼= (F ⊗̃OW

OT )
⊗̃OT

(OW / kerλ∗) is (OW / kerλ∗)-flat. Therefore, in Theorem 2.1 it suffices to
consider an embedding λ : T → W and to show that there is an ideal I(F ) in OW

such that F ⊗̃OW
(OW /J) is OW /J-flat if and only if I(F ) ⊂ J .
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The germ P is called the local flattener of F (with respect to ϕ), and I(F ) is
the ideal of the local flattener.

Proof of Theorem 2.1. The uniqueness of P is automatic, since λ∗
P : OW → OP is

surjective.
By regularity of W , we can identify OW with the ring R = K{y} of convergent

power series in y = (y1, . . . , yn). Assume that Z is a subgerm of Km
0 . Using the

graph of ϕ to embed Z in W × Km, we can think of OZ as a quotient ring of
A = R{x}, where x = (x1, . . . , xm). Then F is a finitely generated A-module. We
will proceed by induction on m, the number of the x-variables.

Choose g ∈ A and ψ : Al → F satisfying Theorem 1.1(A). Let J(F ) be the ideal
in R generated by the coefficients of (the expansions in x of) the elements in kerψ,
i.e., the unique minimal ideal J in R satisfying kerψ ⊂ J ·Al. If F = imψ (which
is the case if m = 0, since then g is invertible in A), then Theorem 1.1(B) implies
that J(F ) is the ideal of the local flattener of F . If F �= imψ, then m > 0 and
we may assume by the inductive hypothesis (see Remark 1.2) that there is a local
flattening ideal I(F/imψ) in OW . It follows that I(F ) := J(F ) + I(F/imψ) is the
ideal of the local flattener of F . �

Let X and Y be analytic spaces over K, and let ϕ : Y ×X → Y be the canonical
projection. Let F be a coherent OY×X -module. For (η, ξ) ∈ Y × X, let Iη,ξ(F)
denote the ideal in OY,η of the local flattener of the stalk F(η,ξ) (with respect to ϕ).
Given any ideal J in OY,η, we let Jη′ denote the ideal generated by (a system of
generators of) J at nearby points η′ ∈ Y . Then Theorem 1.1 implies the following.

Theorem 2.3 (Openness of flatness). For every (η, ξ) in a sufficiently small open
neighbourhood of (η0, ξ0) in Y ×X, with η in a representative of the zero-set germ
V(Iη0,ξ0(F)), we have

(2.1) Iη,ξ(F) ⊂ (Iη0,ξ0(F))η .

Remark 2.4 (Douady’s openness of flatness [4]). Let ϕ : X → Y be a morphism of
analytic spaces, and let F be a coherent sheaf of OX -modules. Let J be a coherent
sheaf of ideals in OY , and let Z be the closed analytic subspace of Y defined by J
(i.e., OZ = OY /J and |Z| = supp(OY /J)). Then Theorem 2.3 implies that

NX(Z) = {ξ ∈ ϕ−1(|Z|) : Fξ⊗̃OY,ϕ(ξ)
OZ,ϕ(ξ) is not OZ,ϕ(ξ)-flat}

is a closed subset of |X|. In particular, for Z = Y , the latter implies openness of
the set of points ξ ∈ X with the property that Fξ is a flat OY,ϕ(ξ)-module. This
result is due to Douady [4] and is the classical form of “openness of flatness”.

Proof of Theorem 2.3. As in the proof of Theorem 2.1, we proceed by induction on
the fibre-dimension m of ϕ : X×Y → Y . Using Theorem 1.1(A) with F = F(η0,ξ0),
we can choose neighbourhoods U of ξ0 and V of η0, a function g analytic on V ×U ,
and a morphism ψ : Ol

V×U → F|V ×U of OV×U -modules, such that g(η0, x) �= 0,

g(η0,ξ0) · F(η0,ξ0) ⊂ (imψ)(η0,ξ0) and (kerψ)(η0,ξ0) ⊂ mV,η0
· Ol

V×U,(η0,ξ0)
. Since our

problem is local, we can assume that U (resp. V ) is an open polydisc in Cm (resp.
Cn) centred at ξ0 (resp. η0). (After shrinking V if necessary) let J be a coherent
OV -ideal such that Jη0

= Iη0,ξ0(F); we can assume that Jη = (Iη0,ξ0(F))η for all
η ∈ V . Let Z denote the closed analytic subspace of V defined by J ; i.e., |Z|
is a representative in V of the zero-set germ V(Iη0,ξ0(F)). Then Theorem 1.1(B)
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implies that

(kerψ)(η0,ξ0) ⊂ Jη0
· Ol

V×U,(η0,ξ0)
,(2.2)

(F/imψ)(η0,ξ0)⊗̃OY,η0
OZ,η0

is OZ,η0
-flat.(2.3)

It follows (after shrinking U and V if needed) that g(η, x) �= 0 for all η ∈ V and
g ·F ⊂ imψ. Then (2.2) implies that

(2.4) (kerψ)(η,ξ) ⊂ Jη · Ol
V×U,(η,ξ) ⊂ mV,η · Ol

V×U,(η,ξ) ,

for all (η, ξ) ∈ V × U with η ∈ |Z|.
If g(η, ξ) �= 0 (which is the case if m = 0), then, by Theorem 1.1(B), the first

inclusion of (2.4) implies that Iη,ξ(F) ⊂ Jη = (Iη0,ξ0(F))η, as required.
Otherwise g(η0, ξ0) = 0 (and m > 0). By Theorem 1.1, it suffices to show that

(F/imψ)(η,ξ)⊗̃OY,η
OZ,η is OZ,η-flat, provided η ∈ |Z| and g(η, ξ) = 0. After a lin-

ear change of the x-variables, we can assume that U = U ′×U ′′, where U ′ is spanned
by the variables x̃ = (x1, . . . , xm−1) and U ′′ is spanned by xm, and that g(η0,ξ0) is
regular in xm − ξ0m, where ξ0m is the last coordinate of ξ0. By Remark 1.2, after
shrinking U if needed, we can consider F/imψ as a coherent OV×U ′ -module; we

denote it F̃ . Let ξ̃0 denote the x̃-coordinates of ξ0. Then F̃(η0,ξ̃0)
= (F/imψ)(η0,ξ0)

(since g(η0, ξ̃0, ·) vanishes only at ξ0m), and hence F̃(η0,ξ̃0)
⊗̃OY,η0

OZ,η0
is OZ,η0

-

flat, by (2.3). By the inductive hypothesis, F̃(η,ξ̃)⊗̃OY,η
OZ,η is OZ,η-flat for every

(η, ξ̃) ∈ |Z| × U ′. To complete the proof, observe that for any (η, ξ) ∈ |Z| × U

with g(η, ξ) = 0, (F/imψ)(η,ξ) is a direct summand of F̃(η,ξ̃). Indeed, one can show

this by a direct calculation based on ‘collecting into’ the remainder of Weierstrass
Division by g(η, ξ̃, ·) the remainders of division by the factors of g(η, ξ̃, ·). Hence

(F/imψ)(η,ξ)⊗̃OY,η
OZ,η is OZ,η-flat, as a direct summand of F̃(η,ξ̃)⊗̃OY,η

OZ,η, by

[3, Ch. 1, §2.3, Prop. 2]. �

Remark 2.5 (Frisch’s generic flatness theorem [5]). Let ϕ : X → Y denote a mor-
phism of complex-analytic spaces and let F denote a coherent sheaf of OX -modules.
Frisch’s generic flatness theorem asserts that the non-flat locus Σ := {ξ ∈ X :
Fξ is not OY,ϕ(ξ)-flat} is a closed analytic subset ofX and that ifX is reduced, then
ϕ(Σ) is nowhere dense in Y . The first assertion follows from Theorem 2.3 above,
together with the fact that Σ is a constructible subset of X. See [2, Thm. 7.15] for
a constructive elementary proof of the latter. The second assertion then follows
in a simple way (as in [5, Prop. IV.14]) and, in fact, can also be proved using
Theorem 1.1 and further development of (2.1).

3. Proof of the main theorem

We use the notation preceding Theorem 1.1. Consider a presentation (1.1) of F
as an A-module. Applying ⊗̃RR/m, we get a homomorphism Φm : A(0)p → A(0)q

of A(0)-modules such that F ⊗̃RR/m ∼= coker(Φm). Set rm := rank (Φm). We can
assume that Φ is given by a block matrix (1.4) and g := detα satisfies g(0, x) �= 0.
For an ideal J in R, define

kerJ Φ := {ζ ∈ Ap : Φ(ζ) ∈ J ·Aq}
and

rank JΦ := min{r ≥ 1 : all (r + 1)× (r + 1) minors of Φ belong to J ·A} .
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Our proof of Theorem 1.1(B) is based on showing that property (1) of the theo-
rem is equivalent to equalities q − l = rank JΦ = rankΦm and that property (2) of
the theorem is equivalent to R/J-flatness of G⊗̃RR/J , where

G := Arm/[g ·Arm + im (α# · β)] .

The latter equivalence is obvious if g is a unit in A, since both F/imψ and G are zero
in this case. Suppose then that g is not invertible in A, that is, g(0, 0) = 0. Since
g(0, x) �= 0, then after a (generic and linear) change of the x-coordinates to (x̃, xm),
where x̃ = (x1, . . . , xm−1), we have g(0, 0, xm) �= 0. By the Weierstrass Preparation

Theorem, g = u ·P , where u(0, 0) �= 0 and P (y, x) = xd
m+

∑d
i=1 pi(y, x̃) ·xd−i

m , with
pi(0, 0) = 0.

The ring A/g ·A is a finite free R{x̃}-module. We shall describe the action of
α# · β : Ap−rm → Arm modulo g as a linear mapping of finite R{x̃}-modules.

Given η ∈ Ap−rm , Weierstrass division by g gives η ≡
∑d

j=1 ηjx
d−j
m (mod g), with

ηj ∈ R{x̃}p−rm . Applying Weierstrass division by g to the entries of α# · β, we
form matrices Ti = Ti(y, x̃), 1 ≤ i ≤ d, such that

(3.1) (α# · β)(η) ≡ (

d∑
i=1

Ti · xd−i
m ) · (

d∑
j=1

ηj · xd−j
m ) (mod g) .

Applying Euclid division by P (y, x) (as a monic polynomial in xm) to the latter
product, we obtain the matrix G = (Gij)1≤i,j≤d, with block-matrices Gij of size
rm × (p− rm) and entries in R{x̃}, such that all entries of the matrix

(3.2) (

d∑
i=1

Ti · xd−i
m ) · (

d∑
j=1

ηj · xd−j
m ) −

∑
1≤i,j≤d

Gij · ηj · xd−i
m

are linear in the ηj with coefficients in the ideal generated by P (y, x) in the ring
R{x̃}[xm]. Then G coincides with R{x̃}rmd/imG as R{x̃}-modules. With these
preparations and modulo Lemma 3.2 below, Theorem 1.1(B) is a consequence of
the following.

Proposition 3.1. Let G : R{x̃}(p−rm)d → R{x̃}rmd be as above (or G = 0 if
g(0, 0) �= 0). Then ker(Φm) = (kerJ Φ)(0) if and only if rankΦm = rank JΦ and
ker(Gm) = (kerJ G)(0).

Before proving Proposition 3.1, let us note that the first equality of Proposi-
tion 3.1 expresses R/J-flatness of F :

Lemma 3.2. F ⊗̃RR/J is R/J-flat if and only if (kerJ Φ)(0) = ker(Φm).

Proof. By definition of kerJ Φ, ζ ∈ kerJ Φ implies Φ(ζ) ∈ m ·Aq, and hence
Φm(ζ(0)) = 0. Therefore, we always have (kerJ Φ)(0) ⊂ kerΦm. On the other
hand, by a well-known criterion for flatness (see, e.g., [7, Prop. 6.2]), F ⊗̃RR/J is

R/J-flat if and only if T̃or
R/J

1 (F ⊗̃RR/J,R/m) = 0.
By (1.2), we have F ⊗̃RR/J ∼= (Aq/J ·Aq)/ΦJ(A

p/J ·Ap). Notice that ker(ΦJ) =
(kerJ Φ)/J ·Ap. Hence ΦJ (A

p/J ·Ap) ∼= (Ap/J ·Ap)/ ker(ΦJ) ∼= Ap/ kerJ Φ, and we
get from (1.2) a short exact sequence

0 → Ap/ kerJ Φ → Aq/J ·Aq → F ⊗̃RR/J → 0 .
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The induced long exact sequence of T̃or
R/J

-modules ends with

0 → T̃or
R/J

1 (F ⊗̃RR/J,R/m) → (Ap/ kerJ Φ)⊗̃R/JR/m

λ→ (Aq⊗̃RR/J)⊗̃R/JR/m → (F ⊗̃RR/J)⊗̃R/JR/m → 0 ,

where the leftmost term is zero by R/J-flatness of Aq⊗̃RR/J (which follows from
the R-flatness of Aq). Thus F ⊗̃RR/J is R/J-flat if and only if

A(0)p/(kerJ Φ)(0) ∼= (Ap/ kerJ Φ)⊗̃R/JR/m
λ−→ Aq⊗̃R/JR/m ∼= A(0)q

is injective. By (1.3), the latter condition is equivalent to (kerJ Φ)(0) ⊃ ker(Φm),
which completes the proof of the lemma. �

The proof of Proposition 3.1 depends on several lemmas, which follow. First, we
establish a useful cancellation law.

Lemma 3.3. Let J be an ideal in R, and let g, ζ ∈ A be such that g(0, x) �= 0 in
A(0) = K{x} and g · ζ ∈ J ·A. Then ζ ∈ J ·A.

Proof. Write ζ =
∑

ν∈Nm ζνx
ν , where ζν ∈ R, and consider g and ζ as elements of

the ring Ã := R[[x]]. By assumption, g /∈ m·Ã. Hence, after localizing in m·Ã, we
get ζ

mÃ ∈ (JÃ)
mÃ, because g

mÃ is invertible in Ã
mÃ. Since Ã is a free R-module,

we have Ã
mÃ

∼= Rm[[x]], and hence ζ
mÃ ∈ (JÃ)

mÃ if and only if, for all ν ∈ Nm,
(ζν)m ∈ Jm, that is, ζν ∈ J . Thus ζ ∈ J ·A, as required. �

Recall that rm denotes the rank of Φm (in the notation at the beginning of this
section).

Lemma 3.4. Let J be an ideal in R. Then the following conditions are equivalent:

(i) rankΦm = rank JΦ;
(ii) we can order the columns and rows of Φ so that Φ has block form (1.4) with

α of size r × r, (detα)(0, x) �= 0 and rank JΦ = r;
(iii) we can order the columns and rows of Φ so that Φ has block form (1.4),

where α has size r×r, (detα)(0, x) �= 0, and all entries of (detα)·δ−γ·α#·β
are in J ·A;

(iv) if Φ is a block matrix (1.4), where α is of size rm × rm and (detα)(0) �= 0,
then all entries of (detα) · δ − γ · α# · β are in J ·A;

(v) if g ∈ A, g(0, x) �= 0, and Aq = Ar ⊕Al, where g ·Aq ⊂ imΦ+ ({0}r ⊕Al)
and imΦ∩({0}r⊕Al) ⊂ {0}r⊕m·Al, then imΦ∩({0}r⊕Al) ⊂ {0}r⊕J·Al;

(vi) if g ∈ A, g(0, x) �= 0 and ψ : Al → F is a homomorphism of A-modules
such that g · F ⊂ imψ and kerψ ⊂ m·Al, then kerψ ⊂ J ·Al.

Proof. (ii) ⇒ (i): Clearly r ≤ rankΦm and rankΦm ≤ rank JΦ. Hence all three are
equal if rank JΦ = r.

(i) ⇒ (iv): By Remark 1.3, all entries of (detα)·δ−γ ·α# ·β are (rm+1)×(rm+1)
minors of Φ, and hence they belong to J ·A if rank JΦ = rm.

(iv) ⇒ (iii): Set r = rm and let α, β, γ, δ be as in (iv).
(iii) ⇒ (ii): Set g = detα. By the matrix identity of Remark 1.3, all (r + 1) ×

(r+1) minors of g ·Φ are combinations of the entries of (detα) · δ− γ ·α# · β with
coefficients in A. Hence, if ζ is an (r+1)× (r+1) minor of Φ, then gr+1 · ζ ∈ J ·A,
which by Lemma 3.3 implies ζ ∈ J ·A.
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(v) ⇒ (vi): The homomorphism ψ : Al → F can be extended to a surjective
homomorphism Ψ : Aq → F , which by Oka’s coherence theorem extends to an

exact sequence Ap Φ−→ Aq Ψ−→ F → 0.
(vi) ⇒ (v): The assumptions in (v) imply the assumptions in (vi), with the same

g and ψ being the restriction of Ψ (from the above exact sequence) to {0}r ⊕ Al.
Then imΦ ∩ ({0}r ⊕Al) = kerψ ⊂ J ·Al.

It remains to show that (iv) is equivalent to (v). Write Φ in block form (1.4),
with α of size r × r. We will use the fact that (�, σ) ∈ Aq = Ar ⊕ Al belongs
to imΦ ∩ ({0}r ⊕ Al) if and only if σ = γξ + δη and αξ + βη = � = 0, for some
(ξ, η) ∈ Ar ⊕Ap−r. Then (detα) · ξ = (α# · α)(ξ) = −(α# · β)(η), and hence

(detα) · σ = γ((detα) · ξ) + (detα) · δ(η) = −(γ · α# · β)(η) + (detα) · δ(η) .

It follows that
(3.3)
(detα) · [imΦ∩({0}r⊕Al)] ⊂ {0}r⊕ im [(detα) ·δ−γ ·α# ·β] ⊂ imΦ∩({0}r⊕Al) ,

where the latter inclusion is a consequence of Remark 1.3.
(v) ⇒ (iv): The assumptions of (iv) imply that all entries of (detα) ·δ−γ ·α# ·β

are in m ·A (by Remark 1.3, as (rm + 1) × (rm + 1) minors of Φ). Therefore
the assumptions of (v) follow with r := rm, l := q − r and g := detα. Indeed,
g · Idr = α · α#, and so

g ·Aq ⊂ α(Ar)⊕Al ⊂ imΦ + ({0}r ⊕Al) .

Also, by (3.3), ζ = (�, σ) ∈ imΦ∩({0}r⊕Al) implies g ·σ ∈ im [(detα)·δ−γ ·α# ·β].
Hence g · ζ ∈ m·Aq, and therefore ζ ∈ m·Aq, by Lemma 3.3.

Now, (v) implies imΦ ∩ ({0}r ⊕ Al) ⊂ {0}r ⊕ J ·Al, which by (3.3) means that
im [(detα) · δ − γ · α# · β] ⊂ J ·Al, and hence the entries of (detα) · δ − γ · α# · β
are in J ·A.

(iv) ⇒ (v): Let π1 : Aq = Ar ⊕ Al → Ar denote the canonical projection to
the first direct summand. By the assumptions of (v), there is a matrix Ξ of size
p × r with entries in A such that g · Idr = π1 · Φ · Ξ. Since g(0, x) �= 0, it follows
that rank (π1 · Φ) = r. Therefore there is an ordering of columns of Φ such that
π1 · Φ = [α, β], with α of size r × r and (detα)(0, x) �= 0. Then Φ has block form
(1.4) and {0}r ⊕ im [(detα) · δ − γ · α# · β] ⊂ imΦ ∩ ({0}r ⊕ Al). Hence, by the
assumptions of (v), all entries of (detα) · δ − γ · α# · β are in m · Al. Using the
equivalence of (ii) and (iii) for J = m, we see that r = rankmΦ = rankΦm; i.e., the
assumptions of (iv) are satisfied. It follows that J ·Al ⊃ im [(detα) · δ− γ ·α# · β];
hence {0}r⊕J ·Al ⊃ (detα) · [imΦ∩ ({0}r⊕Al)], by (3.3), and thus {0}r⊕J ·Al ⊃
imΦ ∩ ({0}r ⊕Al), by Lemma 3.3. �

Lemma 3.5. Assume that ker(Φm) = (kerJ Φ)(0). Then rankΦm = rank JΦ.

Proof. Clearly, rm = rankΦm ≤ rank JΦ. For the opposite inequality, choose
ξj(x) ∈ kerΦm ⊂ K{x}p, 1 ≤ j ≤ p − rm, so that the p × (p − rm) matrix
ξ(x) = [ξ1(x), . . . , ξp−rm(x)] has rank p − rm. Then, by assumption, there is a
matrix Ξ = Ξ(y, x) of size p× (p− rm) such that the entries of Φ ·Ξ are in J ·A and
Ξ(0, x) = ξ(x). It follows that rankΞ = p − rm. By Cramer’s Rule (and after an
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appropriate reordering of the columns of Φ and rows of Ξ), there exists a matrix Σ
of size (p− rm)× (p− rm) with entries in A such that

Ξ · Σ =

[
g · Idp−rm

Γ

]
,

where g ∈ A satisfies g(0, x) �= 0 and Γ is a matrix with entries in A of size
rm × (p − rm). Write Φ = [Φ1,Φ2], where Φ1 consists of the first p − rm columns
of Φ. It follows that g ·Φ1 +Φ2 · Γ is a matrix with entries in J ·A, and hence the
entries of g ·Φ− [−Φ2 · Γ, g ·Φ2] are also in J ·A. Since Φ2 is of size q × rm, then
rank [−Φ2 · Γ, g · Φ2] ≤ rankΦ2 ≤ rm. Consequently,

rank J (g · Φ) = rank J [−Φ2 · Γ, g · Φ2] ≤ rm .

It thus suffices to show that rank JΦ = rank J (g · Φ), but that is a consequence of
Lemma 3.3. �

Remark 3.6. Let Φ be as in Lemma 3.4 (iv), and let π2 : Ap = Arm ⊕ Ap−rm →
Ap−rm denote the canonical projection to the second direct summand. Then

(kerJ Φ)(0) = ker(Φm) iff π2((kerJ Φ)(0)) = π2(ker(Φm)) ,

where J is an ideal in R. Indeed, since (kerJ Φ)(0) is always contained in ker(Φm)
(cf. the proof of Lemma 3.2), it suffices to show that π2((kerJ Φ)(0)) ⊃ π2(ker(Φm))
implies ker(Φm) ⊂ (kerJ Φ)(0). Let ζ = ζ(x) be an element of kerΦm, and let
ξ ∈ kerJ Φ be such that π2(ξ(0, x)) = π2(ζ). It suffices to show that ζ(x) = ξ(0, x).
Since η(x) := ξ(0, x)− ζ(x) belongs to kerπ2 ∩ kerΦm, it follows that η = (η′, 0) ∈
Arm ⊕ Ap−rm and α(0, x).η′(x) = 0. Therefore (detα)(0, x) · η′(x) = 0, and hence
η′ = 0, and η = 0, as required.

Lemma 3.7. Let Φ and π2 : Ap = Arm ⊕ Ap−rm → Ap−rm be as above, and let J
be an ideal in R. Then η ∈ π2(kerJ Φ) if and only if the following two conditions
hold:

(α# · β)(η) ∈ g ·Arm + J ·Arm ,

(g · δ − γ · α# · β)(η) ∈ J ·Aq−rm ,

where g denotes detα.

Proof. For the “only if” direction, let (ξ, η) be an element of kerJ Φ. Then αξ+βη ∈
J ·Arm and γξ + δη ∈ J ·Aq−rm , and hence

g · ξ + (α# · β)(η) = α# · (αξ + βη) ≡ 0 (mod J ·Arm) and

(g ·δ − γ ·α# ·β)(η) = g ·(γξ + δη)− γ ·(g ·ξ + (α# ·β)(η)) ≡ 0 (mod J ·Aq−rm).

Now, for the “if” direction, let ξ ∈ Arm be such that g · ξ+ (α# · β)(η) ≡ 0 modulo
J ·Arm and assume that (g · δ − γ · α# · β)(η) ∈ J ·Aq−rm . Then

g · (αξ + βη) = α · (g · ξ + (α# · β)(η)) ≡ 0 (mod J ·Arm) and

g ·(γξ + δη) = (g ·δ − γ ·α# ·β)(η) + γ ·(g ·ξ + (α# ·β)(η)) ≡ 0 (mod J ·Aq−rm).

Therefore g · (ξ, η) ∈ kerJ Φ; hence (ξ, η) ∈ kerJ Φ by Lemma 3.3, and so η ∈
π2(kerJ Φ), as required. �
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Remark 3.8. Since the entries of g · δ−γ ·α# ·β are in m ·A (by Remark 1.3), Lem-
ma 3.7 applied to J = m asserts that

η ∈ π2(ker(Φm)) iff (α# · β)(0, x).η(x) ∈ g(0, x) ·A(0)rm .

Proof of Proposition 3.1. Let π2 : Ap = Arm ⊕ Ap−rm → Ap−rm be as above. By
Lemma 3.5 and Remark 3.6, it suffices to show the equivalence

π2((kerJ Φ)(0)) = π2(ker(Φm)) iff (kerJ G)(0) = ker(Gm) ,

under the assumption that rm = rank JΦ (i.e., the equivalent conditions of Lem-
ma 3.4 are satisfied).

Suppose first that g is a unit in A (and hence (kerJ G)(0) = ker(Gm) trivially).
Then the condition (α# · β)(η) ∈ g · Arm + J · Arm of Lemma 3.7 is vacuous,
because g ·Arm + J ·Arm = Arm . Since the entries of g ·δ − γ ·α# ·β are in J ·A
(Lemma 3.4 (iv)), it follows from Lemma 3.7 that π2(kerJ Φ) = Ap−rm . Therefore
π2((kerJ Φ)(0)) ⊃ π2(ker(Φm)), and hence (kerJ Φ)(0) = ker(Φm), by Remark 3.6.

Suppose then that g is not a unit in A, i.e., g(0, 0) = 0. Let η = η(x) ∈ A(0)p−rm .
Since g(0, x) �= 0, then after a generic linear change of the x-variables, g is regular
in xm. Applying the Weierstrass division theorem, we get

η(x) =

d∑
j=1

ηj(x̃) · xd−j
m + g(0, x) · q̃(x) ,

where x̃ = (x1, . . . , xm). Hence, by Remark 3.8,

η ∈ π2(ker(Φm)) iff (α# ·β)(0, x) · (
d∑

j=1

ηj(x̃) · xd−j
m ) ∈ g(0, x) ·A(0)rm .

By (3.1) and (3.2), the latter is the case if and only if {ηj(x̃)}dj=1 ∈ ker(Gm).

Finally, let η = η(y, x) ∈ Ap−rm . By the Weierstrass division theorem (after a
linear change of the x-variables, if needed),

η(y, x) =

d∑
j=1

ηj(y, x̃) · xd−j
m + g(y, x) · q̃(y, x) ,

where x̃ = (x1, . . . , xm). Since the entries of g · δ − γ · α# · β are in J · A (Lem-
ma 3.4 (iv)), Lemma 3.7 implies that

η ∈ π2(kerJ Φ) iff (α# ·β)(
d∑

j=1

ηj(y, x̃) · xd−j
m ) ∈ g ·Arm + J ·Arm .

By (3.1) and (3.2), the latter is the case if and only if {ηj(y, x̃)}dj=1 ∈ kerJ G, which
completes the proof of Proposition 3.1 and Theorem 1.1. �
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