Janusz Adamus

EDGE CONDITION FOR HAMILTONICITY IN BALANCED TRIPARTITE GRAPHS

Abstract

A well-known theorem of Entringer and Schmeichel asserts that a balanced bipartite graph of order $2 n$ obtained from the complete balanced bipartite $K_{n, n}$ by removing at most $n-2$ edges, is bipancyclic. We prove an analogous result for balanced tripartite graphs: If G is a balanced tripartite graph of order $3 n$ and size at least $3 n^{2}-2 n+2$, then G contains cycles of all lengths.

Keywords: Hamilton cycle, pancyclicity, tripartite graph, edge condition.

Mathematics Subject Classification: 05C38, 05C35.

1. INTRODUCTION AND MAIN RESULT

A well-known theorem of Entringer and Schmeichel [4] asserts that a balanced bipartite graph of order $2 n$ and size at least $n^{2}-n+2$ is bipancyclic. The bound is best possible: A graph obtained from $K_{n, n-1}$ by adding a single vertex adjacent to precisely one vertex in the colour class of n vertices, has size $n^{2}-n+1$ and contains no Hamilton cycle. One can consider an analogous problem for balanced tripartite graphs. It is readily seen that a balanced tripartite graph G obtained from the complete balanced tripartite $K_{3}(n)$ by removing $2 n-1$ (that is, all but one) edges incident with a given vertex v (see Fig. 1), contains no Hamilton cycle. As the size of such G is $2 n(n-1)+n^{2}+1$, at least $3 n^{2}-2 n+2$ edges are necessary to guarantee hamiltonicity of a balanced tripartite graph. The main result of this note asserts that this obvious necessary condition is, in fact, sufficient.

Fig. 1
Let $f_{3}(n):=3 n^{2}-2 n+2$ for $n \geq 2$. We prove the following sufficient condition for a balanced tripartite graph to contain a Hamilton cycle:

Theorem 1.1. Let G be a balanced tripartite graph of order $3 n, n \geq 2$, and size at least $f_{3}(n)$. Then G contains a Hamilton cycle.
Remark 1.2. The result is best possible, as seen in Figure 1. Paired with a theorem of Bondy [1] (stating that a hamiltonian graph G satisfying $\|G\| \geq \frac{|G|^{2}}{4}$ is actually pancyclic), the condition $\|G\| \geq f_{3}(n)$ implies, in fact, that G contains cycles of all lengths (see Corollary 3.1).

Remark 1.3. The hamiltonicity criteria for balanced tripartite graphs analogous to the classical ones for bipartite graphs have been sought for and studied over the last decade or so (see, e.g., [2] and [5]). Notice however that the edge-type conditions have not yet been accounted for and our bound does not follow from neither Dirac-type minimal degree nor Ore-type degree sum conditions on tripartite graphs. (For the sake of completeness, recall that a balanced tripartite graph G with colour classes V_{1}, V_{2}, V_{3} of cardinalities n and minimal degree $\delta(G)$ is known to be hamiltonian if $\delta(G)>5 n / 4$ (by [2]), or $\left|N_{G}(x) \cap V_{j}\right|+\left|N_{G}(y) \cap V_{i}\right| \geq n+1$ for every pair of nonadjacent vertices $x \in V_{i}, y \in V_{j}(i \neq j)$ (by [5]).)

2. LEMMAS

Throughout the paper \mathcal{G}_{n} will denote a family of balanced tripartite graphs G with the vertex set $V(G)$ a disjoint union of three colour classes V_{1}, V_{2} and V_{3} of cardinalities $\left|V_{i}\right|=n, n \geq 2$, and such that $\|G\| \geq f_{3}(n)$, where $f_{3}(n)=3 n^{2}-2 n+2$. As usual, $|G|$ denotes the order of a graph G and $\|G\|$ is the size of G. For a vertex v of G, we denote by $N(v)$ the set of vertices adjacent to v; note that $N(v) \subset V(G) \backslash V_{i}$ if $v \in V_{i}$, so in particular $|N(v)| \leq 2 n$.

We begin by showing the following three simple lemmas.
Lemma 2.1. Let $G \in \mathcal{G}_{n}(n \geq 2)$ and assume that the minimal degree of G satisfies $\delta(G) \leq 2 n-2$. Then there exist $i \neq j$ and a pair of non-adjacent vertices $x \in V_{i}$, $y \in V_{j}$ such that both x and y have neighbours in the third colour class V_{k}.

Proof. Pick $y \in V(G)$ with $d(y) \leq 2 n-2$, say $y \in V_{j}$. There exists at least one pair x_{1}, x_{2} of distinct non-neighbours of y, with $x_{1}, x_{2} \in V(G) \backslash V_{j}$. For every such pair, we have $d\left(x_{1}\right)+d\left(x_{2}\right) \geq 2 n$. Indeed, as G is obtained from the complete tripartite graph $K_{3}(n)$ by removing at least $(2 n-1)+(2 n-1)+1-d\left(x_{1}\right)-d\left(x_{2}\right)$ edges, then $d\left(x_{1}\right)+d\left(x_{2}\right) \leq 2 n-1$ implies $\|G\| \leq 3 n^{2}-2 n<f_{3}(n)$; a contradiction.

Hence at least one of the x_{1}, x_{2} has degree greater than $n-1$. Consequently, we may choose $x \in V_{i}(i \neq j)$ such that $x y \notin E(G), y z \in E(G)$ for some z from the third colour class V_{k}, and $d(x) \geq n$. This last inequality together with $x y \notin E(G)$ implies that x also has a neighbour in V_{k}.
Lemma 2.2. Let $G \in \mathcal{G}_{n}(n \geq 2)$ and assume $\delta(G) \leq 2 n-2$. Then there exist $i \neq j$ and a pair of non-adjacent vertices $x \in V_{i}, y \in V_{j}$ such that $N(x) \cap N(y) \neq \emptyset$ (i.e., x and y have a common neighbour in the third class).
Proof. By Lemma 2.1, we may choose a pair of non-adjacent vertices $x \in V_{i}, y \in V_{j}$ such that both x and y have neighbours in the third colour class V_{k}. Suppose that, for every z a neighbour of x in V_{k}, z is not a neighbour of y. Pick such $z \in N(x) \cap V_{k}$. We may assume that z and y share no neighbour in V_{i}; otherwise, if, say, $x^{\prime} \in N(z) \cap N(y)$, replace $(x, y) \in V_{i} \times V_{j}$ with $(z, y) \in V_{k} \times V_{j}$ and get $z y \notin E(G), z x^{\prime} \in E(G)$ and $y x^{\prime} \in E(G)$, as required.

Now, no vertex of V_{k} is a common neighbour of x and y, no vertex of V_{i} is a common neighbour of z and y, and both x and z have at most $n-1$ neighbours in V_{j}. Counting the total number of neighbours of x, y and z, we thus get

$$
d(x)+d(y)+d(z) \leq\left|V_{i}\right|+\left|V_{k}\right|+2\left(\left|V_{j}\right|-1\right)=4 n-2,
$$

so that

$$
\|G\| \leq\|G-\{x, y, z\}\|+d(x)+d(y)+d(z) \leq 3(n-1)^{2}+4 n-2<f_{3}(n)
$$

a contradiction. This shows that at least one neighbour of x in V_{k} is simultanously adjacent to y.

Let G_{n}^{*} denote a graph obtained from the complete tripartite $K_{3}(n)$, with colour classes V_{1}, V_{2}, V_{3}, by removing a complete $V_{1}-V_{2}$ matching; i.e., if $V_{1}=\left\{x_{1}, \ldots, x_{n}\right\}$, $V_{2}=\left\{y_{1}, \ldots, y_{n}\right\}$, then

$$
G_{n}^{*}=K_{3}(n)-\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right\} .
$$

Lemma 2.3. Let $G \in \mathcal{G}_{n}$ be as in Lemma 2.2. Then either G contains (a copy of) G_{n}^{*} or else there is a triple of vertices $x \in V_{1}, y \in V_{2}, z \in V_{3}$ such that $x y \notin E(G)$, $x z \in E(G), y z \in E(G)$ and $\|G-\{x, y, z\}\| \geq f_{3}(n-1)$.
Proof. Let $x \in V_{1}, y \in V_{2}, z \in V_{3}$ be a triple guaranteed by Lemma 2.2. We have $\|G-\{x, y, z\}\| \geq f_{3}(n)-d(x)-d(y)-d(z)+2$, with the last summand arising from counting $x z$ and $y z$ twice in $d(x)+d(y)+d(z)$. As $x y \notin E(G)$, then $d(x) \leq 2 n-1$ and $d(y) \leq 2 n-1$, and the above inequality yields

$$
\|G-\{x, y, z\}\| \geq f_{3}(n)-6 n+4=3 n^{2}-8 n+6
$$

whilst $f_{3}(n-1)=3 n^{2}-8 n+7$. It follows that $\|G-\{x, y, z\}\| \geq f_{3}(n-1)$ unless $d(x)=d(y)=2 n-1$ and $d(z)=2 n$.

Suppose the latter holds. Then we may replace z by another $z^{\prime} \in V_{3}$ and repeat the above argument with a triple $\left\{x, y, z^{\prime}\right\}$. We get again either $\left\|G-\left\{x, y, z^{\prime}\right\}\right\| \geq f_{3}(n-1)$ or else $d(x)=d(y)=2 n-1$ and $d\left(z^{\prime}\right)=2 n$.

Suppose then that $d\left(z^{\prime}\right)=2 n$ for all $z^{\prime} \in V_{k}$. If there is no other pair of vertices $x^{\prime} \in V_{1}$ and $y^{\prime} \in V_{2}$ with $x^{\prime} y^{\prime} \notin E(G)$, then $G=K_{3}(n)-\{x y\}$ contains G_{n}^{*}. Otherwise, pick $x^{\prime} \in V_{1}$ and $y^{\prime} \in V_{2}$ with $x^{\prime} y^{\prime} \notin E(G)$ and repeat the argument with $\left\{x^{\prime}, y^{\prime}, z\right\}$. If $\left\|G-\left\{x^{\prime}, y^{\prime}, z\right\}\right\|<f_{3}(n-1)$, repeat the argument with a triple $\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ for some $z^{\prime} \in V_{3} \backslash\{z\}$, and so on.

It is readily seen that in this way we find a triple $\tilde{x} \in V_{1}, \tilde{y} \in V_{2}, \tilde{z} \in V_{3}$ with $\|G-\{\tilde{x}, \tilde{y}, \tilde{z}\}\| \geq f_{3}(n-1)$ unless there exist subsets $\left\{x_{1}, \ldots, x_{s}\right\} \subset V_{1}$ and $\left\{y_{1}, \ldots, y_{s}\right\} \subset V_{2}, s \leq n$, such that $G=K_{3}(n)-\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{s} y_{s}\right\}$ contains G_{n}^{*}.

3. PROOF OF THE MAIN RESULT

We are now ready to prove Theorem 1.1. Let G be a balanced tripartite graph of order $3 n, n \geq 2$, and size at least $f_{3}(n)=3 n^{2}-2 n+2$. We proceed by induction on n.

As $f_{3}(2)=10$, a balanced tripartite graph G on 6 vertices with $\|G\| \geq f_{3}(2)$ is obtained from $K_{3}(2)$ by removing at most two edges. One easily verifies that every such a graph is hamiltonian.

Suppose then that $n \geq 3$ and the assertion of the theorem holds for $n-1$. If $\delta(G) \geq 2 n-1$, then G is hamiltonian by Dirac's theorem [3], as $2 n-1 \geq \frac{|G|}{2}$ for $n \geq 2$. We may thus assume that $\delta(G) \leq 2 n-2$, and hence Lemma 2.3 applies to G.

Denote, as before, the colour classes of G by V_{1}, V_{2} and V_{3}. Recall that by G_{n}^{*} we denote a graph obtained from $K_{3}(n)$ by removing a complete $V_{1}-V_{2}$ matching. If G contains a subgraph isomorphic to G_{n}^{*}, then we can define explicitly a Hamilton cycle as follows: Write $V_{1}=\left\{x_{1}, \ldots, x_{n}\right\}, V_{2}=\left\{y_{1}, \ldots, y_{n}\right\}$ and $V_{3}=\left\{z_{1}, \ldots, z_{n}\right\}$, where G contains all the $x_{i} y_{j}, x_{i} z_{k}, y_{j} z_{k}$ edges except at most $x_{1} y_{1}, \ldots, x_{n} y_{n}$. Then $x_{1} y_{2} z_{2} x_{2} y_{3} z_{3} \ldots x_{n-1} y_{n} z_{n} x_{n} y_{1} z_{1}$ is a required cycle in G.

Assume then that G contains no G_{n}^{*}, and hence by Lemma 2.3, there is a triple of vertices $x \in V_{1}, y \in V_{2}$ and $z \in V_{3}$ such that $x y \notin E(G), x z \in E(G), y z \in E(G)$ and $\|G-\{x, y, z\}\| \geq f_{3}(n-1)$. Put $H:=G-\{x, y, z\}$. By the inductive hypothesis, H contains a Hamilton cycle C.

Observe that $\delta(G) \geq 2$, for otherwise G would have at least $2 n-1$ edges less than $K_{3}(n)$ and hence $\|G\| \leq 3 n^{2}-2 n+1<f_{3}(n)$; a contradiction. Therefore, as $x y \notin E(G)$, both x and y have a neighbour on C, say w_{x} and w_{y} respectively.

Observe next that $d(x)+d(y) \geq 2 n+1$, for otherwise, as $d(z) \leq 2 n$, would have $\|G\|=\|H\|+d(x)+d(y)+d(z)-2 \leq 3(n-1)^{2}+2 n+2 n-2<f_{3}(n)$; a contradiction. Hence at least one of the vertices x, y has more than one neighbour on C and we may assume that $w_{x} \neq w_{y}$ (see Fig. 2). Now, taking $C+x z+z y+y w_{y}$ and splitting C at w_{y}, we obtain a Hamilton path $x z y w_{y} \ldots v_{x}$ in G, and by reversing the orientation of C, another Hamilton path $x z y w_{y} \ldots v_{x}^{\prime}$. Similarly, G contains two Hamilton paths
starting at $y: y z x w_{x} \ldots v_{y}$ and $y z x w_{x} \ldots v_{y}^{\prime}$ (see Fig. 2). As $n \geq 3,|C| \geq 6$ and at least one of the pairs $\left(v_{x}, v_{y}\right),\left(v_{x}^{\prime}, v_{y}^{\prime}\right)$ is a pair of distinct vertices; say $v_{x} \neq v_{y}$.

Fig. 2
Suppose first that $d_{G}(x)+d_{G}(y)+d_{H}\left(v_{x}\right)+d_{H}\left(v_{y}\right)>6 n-4$. Then at least one of $d_{G}(x)+d_{H}\left(v_{x}\right)$ and $d_{G}(y)+d_{H}\left(v_{y}\right)$ is greater than $3 n-2$, say

$$
d_{G}(x)+d_{H}\left(v_{x}\right) \geq 3 n-1
$$

Consider the Hamilton $x-v_{x}$ path P in G; write $P=x z y v_{1} v_{2} \ldots v_{3 n-4} v_{x}$. We may assume that $x v_{x} \notin E(G)$, for otherwise $P+v_{x} x$ is a Hamilton cycle in G. Define

$$
\tilde{N}_{P}(x)=\left\{v_{i}: x v_{i+1} \in E(G)\right\} \quad \text { and } \quad N_{P}\left(v_{x}\right)=\left\{v_{i}: v_{i} v_{x} \in E(G)\right\}
$$

We have $\left|\tilde{N}_{P}(x)\right| \geq d_{G}(x)-2$ and $\left|N_{P}\left(v_{x}\right)\right|=d_{H}\left(v_{x}\right)$, hence $\left|\tilde{N}_{P}(x)\right|+\left|N_{P}\left(v_{x}\right)\right| \geq$ $3 n-3$. By the pigeonhole principle, there exists $1 \leq i \leq 3 n-5$ such that $v_{i} v_{x} \in E(G)$ and $x v_{i+1} \in E(G)$, hence a Hamilton cycle $x z y v_{1} \ldots v_{i} v_{x} v_{3 n-4} \ldots v_{i+1}$ in G.

Suppose now that

$$
\begin{equation*}
d_{G}(x)+d_{G}(y)+d_{H}\left(v_{x}\right)+d_{H}\left(v_{y}\right) \leq 6 n-4 . \tag{3.1}
\end{equation*}
$$

As H is obtained from $K_{3}(n-1)$ by removing at least $4 n-5-d_{H}\left(v_{x}\right)-d_{H}\left(v_{y}\right)$ edges, we have

$$
\begin{equation*}
\|H\| \leq 3(n-1)^{2}-4 n+5+d_{H}\left(v_{x}\right)+d_{H}\left(v_{y}\right) \tag{3.2}
\end{equation*}
$$

Then $\|G\|=\|H\|+d_{G}(x)+d_{G}(y)+d_{G}(z)-2$, together with (3.1), (3.2) and $d_{G}(z) \leq$ $2 n$, yield

$$
\begin{aligned}
3 n^{2}-2 n+2 & =f_{3}(n) \leq\|G\| \leq \\
& \leq 3(n-1)^{2}-4 n+5+d_{H}\left(v_{x}\right)+d_{H}\left(v_{y}\right)+d_{G}(x)+d_{G}(y)+2 n-2 \leq \\
& \leq 3 n^{2}-2 n+2
\end{aligned}
$$

This is only possible if $\|H\|$ actually equals $3(n-1)^{2}-4 n+5+d_{H}\left(v_{x}\right)+d_{H}\left(v_{y}\right)$; i.e., for every pair of distinct vertices $v_{1}, v_{2} \in V(H) \backslash\left\{v_{x}, v_{y}\right\}$, either v_{1}, v_{2} belong to
the same colour class of G or else they are adjacent. Note that for any such pair, H is obtained from $K_{3}(n-1)$ by removing at least $4 n-5-d_{H}\left(v_{1}\right)-d_{H}\left(v_{2}\right)+1$ edges, so that

$$
\begin{equation*}
\|H\| \leq 3(n-1)^{2}-4 n+4+d_{H}\left(v_{1}\right)+d_{H}\left(v_{2}\right) \tag{3.3}
\end{equation*}
$$

Now, if $v_{x}^{\prime} \neq v_{y}^{\prime}$, then we can repeat the above calculations with (3.3) in place of (3.2), to get
$\|G\| \leq 3(n-1)^{2}-4 n+4+d_{H}\left(v_{x}^{\prime}\right)+d_{H}\left(v_{y}^{\prime}\right)+d_{G}(x)+d_{G}(y)+2 n-2 \leq 3 n^{2}-2 n+1$,
provided $d_{G}(x)+d_{G}(y)+d_{H}\left(v_{x}^{\prime}\right)+d_{H}\left(v_{y}^{\prime}\right) \leq 6 n-4$. This however contradicts $\|G\| \geq f_{3}(n)$, hence without loss of generality $d_{G}(x)+d_{H}\left(v_{x}^{\prime}\right) \geq 3 n-1$, and we produce a Hamilton cycle from the path $x z y w_{y} \ldots v_{x}^{\prime}$, as above.

It does remain to consider the case $v_{x}^{\prime}=v_{y}^{\prime}$. Then the Hamilton $x-v_{x}^{\prime}$ path P^{\prime} in G is as in Figure 2; i.e., of the form $P^{\prime}=x z y w_{y} v_{x} \ldots w_{x} v_{x}^{\prime}$. Since $d(x)+d(y) \geq 2 n+1$, then without loss of generality $d(y) \geq n+1 \geq 4$, and hence y has a neighbour in G, say w_{y}^{\prime}, different from z, w_{y} and w_{x}. It follows that w_{y}^{\prime} on P^{\prime} has a neighbour $v_{x}^{\prime \prime}$ different from v_{y}, v_{y}^{\prime} and v_{x}. In particular, v_{y}^{\prime} and $v_{x}^{\prime \prime}$ are adjacent, else from the same colour class. We now repeat our calculations with the endvertices of the Hamilton paths $y-v_{y}^{\prime}$ and $x z y w_{y}^{\prime}-v_{x}^{\prime \prime}$, with v_{y}^{\prime} and $v_{x}^{\prime \prime}$ in place of v_{1} and v_{2} in (3.3), to get that $d_{G}(y)+d_{H}\left(v_{y}^{\prime}\right) \geq 3 n-1$ or $d_{G}(x)+d_{H}\left(v_{x}^{\prime \prime}\right) \geq 3 n-1$. This again implies a Hamilton cycle, which completes the proof.
Corollary 3.1. Let G be a balanced tripartite graph of order $3 n$ and size at least $3 n^{2}-2 n+2$. Then G is pancyclic.
Proof. By a theorem of Bondy [1], pancyclicity of G follows from its hamiltonicity, provided $\|G\| \geq \frac{|G|^{2}}{4}$. But $f_{3}(n)=3 n^{2}-2 n+2 \geq \frac{(3 n)^{2}}{4}$ for all $n \in \mathbb{N}$.

Acknowledgments

I am happy to thank Lech Adamus for his valuable comments and discussions regarding the subject of this note.

REFERENCES

[1] J.A. Bondy, Pancyclic graphs I, J. Combinatorial Theory B 11 (1971), 80-84.
[2] G. Chen, R.J. Faudree, R.J. Gould, M.S. Jacobson, L. Lesniak, Hamiltonicity in balanced k-partite graphs, Graphs and Combinatorics 11 (1995), 221-231.
[3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 3 (1952) 2, 69-81.
[4] R.C. Entringer, E. Schmeichel, Edge conditions and cycle structure in bipartite graphs, Ars Combinatoria 26 (1988), 229-232.
[5] K. Yokomura, A degree sum condition on hamiltonian cycles in balanced 3-partite graphs, Discrete Math. 178 (1998), 293-297.

Janusz Adamus
jadamus@uwo.ca
The University of Western Ontario
Department of Mathematics
London, Ontario N6A 5B7 Canada
Jagiellonian University
Institute of Mathematics
ul. Łojasiewicza 6, 30-348 Kraków, Poland
Received: September 7, 2008.
Revised: July 20, 2009.
Accepted: August 2, 2009.

