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Uniform Linear Bound in
Chevalley’s Lemma

J. Adamus, E. Bierstone, and P. D. Milman

Abstract. We obtain a uniform linear bound for the Chevalley function at a point in the source of an

analytic mapping that is regular in the sense of Gabrielov. There is a version of Chevalley’s lemma also

along a fibre, or at a point of the image of a proper analytic mapping. We get a uniform linear bound

for the Chevalley function of a closed Nash (or formally Nash) subanalytic set.

1 Introduction

Chevalley’s Lemma [4] plays an important role in the solution of equations f (x) =

g(ϕ(x)), where y = ϕ(x) is an analytic mapping in several variables. Given f (x)
analytic (or, for example, C∞ in the real case), the problem is to find conditions

under which we can solve for g(y) in the same class. Chevalley’s Lemma asserts that
given x = a and k ∈ N, there is a corresponding l = l(k) < ∞ such that the l-jet
of a composite g ◦ ϕ at a determines the k-jet of g at ϕ(a), modulo a formal relation
among the components of ϕ at a. The “Chevalley function” of ϕ at a is the smallest

such l(k).

In this article, we answer questions raised by works of Gabrielov, Izumi and
Bierstone–Milman on finding bounds for the Chevalley function that are linear with
respect to k or uniform with respect to a. Such bounds characterize important reg-
ularity or “tameness” properties of analytic mappings and their images [2, 3, 10]

and measure loss of differentiability in classical problems on composite differentiable
functions [3].

Such bounds are important also in commutative algebra. By way of compari-
son, the analogue of the Chevalley function for a linear analytic equation f (x) =

A(x) ·g(x) (where A(x) is a matrix-valued analytic function and f (x), g(x) are vector-

valued) always has a linear bound, given by the exponent in the Artin–Rees lemma.
Uniformity of the Artin–Rees exponent has been studied in [2, 5, 8].

Let us now be more precise. Let ϕ : M → N denote an analytic mapping of
analytic manifolds (over K = R or C). Let a ∈ M, and let ϕ∗

a : Oϕ(a) → Oa or

ϕ̂∗
a : Ôϕ(a) → Ôa denote the induced homorphisms of analytic local rings or their

completions, respectively. (We write Oa for OM,a, and ma (or m̂a) for the maximal

ideal of Oa (or Ôa).) According to Chevalley’s Lemma, there is an increasing function
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l : N → N (where N denotes the nonnegative integers) such that

ϕ̂∗
a (Ôϕ(a)) ∩ m̂

l(k)+1
a ⊂ ϕ̂∗

a (m̂
k+1
ϕ(a)),

i.e., if F ∈ Ôϕ(a) and ϕ̂∗
a (F) vanishes to order l(k), then F vanishes to order k, modulo

an element of Ker ϕ̂∗
a ([4]; cf. Lemma 3.2 below). Let lϕ∗(a, k) denote the least l(k)

satisfying Chevalley’s Lemma. We call lϕ∗(a, k) the Chevalley function of ϕ̂∗
a .

Let x = (x1, . . . , xm) and y = (y1, . . . , yn) denote local coordinate systems

for M and N at a and ϕ(a), respectively. The local rings Oa or Ôa can be iden-
tified with the rings of convergent or formal power series K{x} = K{x1, . . . , xm}
or K[[x]] = K[[x1, . . . , xm]], respectively. In the local coordinates, write ϕ(x) =

(ϕ1(x), . . . , ϕn(x)). Then Ker ϕ̂∗
a is the ideal of formal relations

{F(y) ∈ K[[y]] : F(ϕ1(x), . . . , ϕn(x)) = 0}

(and Ker ϕ∗
a is the analogous ideal of analytic relations). Chevalley’s Lemma is an

analogue for such nonlinear relations of the Artin-Rees lemma. (See Remark 1.4.)
Let r1

a(ϕ) denote the generic rank of ϕ near a, and set

r2
a(ϕ) := dim

Ôϕ(a)

Ker ϕ̂∗
a

, r3
a(ϕ) := dim

Oϕ(a)

Ker ϕ∗
a

(where dim denotes the Krull dimension). Then r1
a(ϕ) ≤ r2

a(ϕ) ≤ r3
a(ϕ). Gabrielov

[6] proved that if r1
a(ϕ) = r2

a(ϕ), then r2
a(ϕ) = r3

a(ϕ), i.e., if there are enough formal
relations, then the ideal of formal relations is generated by convergent relations. The
mapping ϕ is called regular at a if r1

a(ϕ) = r3
a(ϕ). We say that ϕ is regular if it is

regular at every point of M. Izumi [10] proved that ϕ is regular at a if and only if the

Chevalley function of ϕ̂∗
a has a linear (upper) bound, i.e., there exist α, β ∈ N such

that lϕ∗(a, k) ≤ αk + β, for all k ∈ N. On the other hand, Bierstone and Milman [2]
proved that if ϕ is regular, then lϕ∗(a, k) has a uniform bound, i.e., for every compact
L ⊂ M, there exists lL : N → N such that lϕ∗(a, k) ≤ lL(k), for all a ∈ L and k ∈ N. In

this article, we prove that the Chevalley function associated with a regular mapping
has a uniform linear bound.

Theorem 1.1 Suppose that ϕ is regular. Then for every compact L ⊂ M, there exist

αL, βL ∈ N such that lϕ∗(a, k) ≤ αLk + βL, for all a ∈ L and k ∈ N.

Chevalley’s Lemma can be used also to compare two notions of order of vanishing
of a real-analytic function at a point of a subanalytic set. Let X denote a closed sub-

analytic subset of R
n. Let b ∈ X and let Fb(X) ⊂ R[[y − b]] denote the formal local

ideal of X at b. (See Lemma 3.6.) For all F ∈ Ôb = R[[y − b]], we define

µX,b(F) := max{l ∈ N : |T l
bF(y)| ≤ const |y − b|l, y ∈ X},

νX,b(F) := max{l ∈ N : F ∈ m̂
l
b + Fb(X)},

(1.1)

where T l
bF(y) denotes the Taylor polynomial of order l of F at b. Then there exists

l : N → N such that for all k ∈ N, if F ∈ Ôb and µX,b(F) > l(k), then νX,b(F) > k.
(See Section 3.) For each k, let lX(b, k) denote the least such l(k). We call lX(b, k) the
Chevalley function of X at b.
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Theorem 1.2 Suppose that X is a Nash (or formally Nash) subanalytic subset of R
n.

Then the Chevalley function of X has a uniform linear bound, i.e., for every compact

K ⊂ X, there exist αK , βK ∈ N such that lX(b, k) ≤ αK k + βK , for all b ∈ K and k ∈ N.

Theorems 1.1 and 1.2 are the main new results in this article. They answer ques-
tions raised in [3, 1.28].

The closed Nash subanalytic subsets X of R
n are the images of regular proper real-

analytic mappings ϕ : M → R
n. In particular, a closed semianalytic set is Nash. A

closed subanalytic subset X of R
n is formally Nash if for every b ∈ X, there is a closed

Nash subanalytic subset Y of X such that Fb(X) = Fb(Y ) [3]. Unlike the situation of

Theorem 1.1, the converse of Theorem 1.2 is false [3, Example 12.8].

The main theorem of [3] (Theorem 1.13) asserts that if X is a closed subanalytic
subset of R

n, then the existence of a uniform bound for lX(b, k) is equivalent to several

other natural analytic and algebro-geometric conditions: for example, semicoher-
ence [3, Definition 1.2], stratification by the diagram of initial exponents of the ideal
Fb(X), b ∈ X [3, Theorem 8.1], and a C∞ composite function property [3, §1.5]. A
uniform bound for the Chevalley function measures loss of differentiability in a Cr

version of the composite function theorem. We use the techniques of [3] to prove
Theorems 1.1 and 1.2 here.

Wang [12, Theorem 1.1] used [9, Theorem 1.2] to prove that the Chevalley func-

tion associated with a regular proper real-analytic mapping ϕ : M → R
n has a uni-

form linear bound if and only if X = ϕ(M) has a uniform linear product estimate,
i.e., for every compact K ⊂ X, there exist αK , βK ∈ N such that for all b ∈ K and

F, G ∈ Ôb,

νXi ,b(F · G) ≤ αK (νXi ,b(F) + νXi ,b(G)) + βK ,

where Xb =
⋃

i Xi is a decomposition of the germ Xb into finitely many irreducible

subanalytic components. We therefore obtain the following from Theorem 1.1.

Theorem 1.3 A closed Nash subanalytic subset of R
n admits a uniform linear product

estimate.

Remark 1.4 The Artin–Rees lemma can be viewed as a version of Chevalley’s
Lemma for linear relations over a Noetherian ring R. Suppose that Ψ : E → G is
a homomorphism of finitely-generated modules over R, and let F ⊂ G denote the
image of Ψ. Let m be the maximal ideal of R. Then F ∩ m

lG ⊂ m
kF if and only if

Ψ
−1(m

lG) ⊂ Ker Ψ + m
kE. The Artin–Rees lemma says that there exists β ∈ N such

that F∩m
k+βG = m

k(F∩m
βG), for all k. In particular, there is always a linear Artin–

Rees exponent l(k) = k + β. Uniform versions of the Artin–Rees lemma were proved
in [2, Theorem 7.4], [5, 8]. A uniform Artin–Rees exponent for a homomorphism

of OM-modules, where M is a real-analytic manifold, measures loss of differentiabil-
ity in Malgrange division, in the same way that a uniform bound for the Chevalley
function relates to composite differentiable functions. (See [2].)
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2 Techniques

2.1 Linear Algebra Lemma

Let R denote a commutative ring with identity, and let E and F be R-modules. If
B ∈ HomR(E, F) and r ∈ N, r ≥ 1, we define

adr B ∈ HomR

(
F, HomR

( r∧
E,

r+1∧
F
))

by the formula (adr B)(ω)(η1 ∧ · · · ∧ ηr) = ω ∧ Bη1 ∧ · · · ∧ Bηr , where ω ∈ F and
η1, . . . , ηr ∈ E, and ad0 B := idF , the identity mapping of F. Clearly, if r > rk B,

then adr B = 0, and if r = rk B, then adr B · B = 0. (Here rk B means the smallest r

such that
∧s

B = 0 for all s > r.) If R is a field, then rk B = dim Im B, so we get the
following.

Lemma 2.1 ([1, §6]) Let E and F be finite-dimensional vector spaces over a field K.

If B : E → F is a linear transformation and r = rk B, then Im B = Ker adr B. In

particular, if A is another linear transformation with target F, then Aξ + Bη = 0 (for

some η) if and only if ξ ∈ Ker adr B · A.

2.2 The Diagram of Initial Exponents

Let A be a commutative ring with identity. Consider the total ordering of N
n

given by the lexicographic ordering of (n + 1)-tuples (|β|, β1, . . . , βn), where β =

(β1, . . . , βn) ∈ N
n and |β| = β1 + · · · + βn. For any formal power series

F(Y ) =
∑

β∈Nn FβY β ∈ A[[Y ]] = A[[Y1, . . . ,Yn]], we define the support supp F :=
{β ∈ N

n : Fβ 6= 0} and the initial exponent exp F := min supp F, (where exp F := ∞
if F = 0.)

Let I be an ideal in A[[Y ]]. The diagram of initial exponents of I is defined as
N(I) := {exp F : F ∈ I \ {0}}. Clearly, N(I) + N

n = N(I).
Suppose that A is a field K. Then by the formal division theorem of Hironaka [7]

(see [2, Theorem 6.2]),

(2.1) K[[Y ]] = I ⊕ K[[Y ]]N(I),

where K[[Y ]]N is defined as {F ∈ K[[Y ]] : supp F ⊂ N
n \ N}, for any N ∈ N

n such
that N + N

n = N.

2.3 Fibred Product

Let M denote an analytic manifold over K, and let s ∈ N, s ≥ 1. Let ϕ : M → N be

an analytic mapping. We denote by Ms
ϕ the s-fold fibred product of M with itself over

N , i.e.,

Ms
ϕ := {a = (a1, . . . , as) ∈ Ms : ϕ(a1) = · · · = ϕ(as)};

Ms
ϕ is a closed analytic subset of Ms. There is a natural mapping ϕ = ϕs : Ms

ϕ → N

given by ϕ(a) = ϕ(a1), i.e., for each i = 1, . . . , s, ϕ = ϕ ◦ ρi , where ρi : Ms
ϕ ∋

(x1, . . . , xs) 7→ xi ∈ M.
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Suppose that K = R. Let E be a closed subanalytic subset of M, and let ϕ : E → R
n

be a continuous subanalytic mapping. Then the fibred product Es
ϕ is a closed suban-

alytic subset of Ms, and the canonical mapping ϕ = ϕs : Es
ϕ → R

n is subanalytic.

Let E̊s
ϕ denote the subset of Es

ϕ consisting of points x = (x1, . . . , xs) ∈ Es
ϕ such that

each xi lies in a distinct connected component of the fibre ϕ−1(ϕ(x)). If ϕ is proper,

then E̊s
ϕ is a subanalytic subset of Ms [3, §7].

2.4 Jets

Let N denote an analytic manifold (over K = R or C), and let b ∈ N . Let l ∈ N

and let Jl(b) denote Ôb/m̂
l+1
b . If F ∈ Ôb, then JlF(b) denotes the image of F in

Jl(b). Let M be an analytic manifold, and let ϕ : M → N be an analytic mapping. If

a ∈ ϕ−1(b), then the homomorphism ϕ̂∗
a : Ôb → Ôa induces a linear transformation

Jlϕ(a) : Jl(b) → Jl(a).
Suppose that N = K

n. Let y = (y1, . . . , yn) denote the affine coordinates of K
n.

Taylor series expansion induces an identification of Ôb with the ring of formal power
series K[[y−b]] = K[[y1−b1, . . . , yn−bn]] (we write F(y) =

∑
β∈Nn Fβ(y−b)β), and

hence an identification of Jl(b) with K
q, q =

(
n+l

l

)
, with respect to which JlF(b) =

(DβF(b))|β|≤l, where Dβ denotes 1/β! times the formal derivative of order β ∈ N.
Using a system of coordinates x = (x1, . . . , xm) for M in a neighbourhood of a,

we can identify Jl(a) with K
p, p =

(
m+l

l

)
. Then

Jlϕ(a) : (Fβ)|β|≤l 7→ ((ϕ̂∗
a (F))α)|α|≤l =

( ∑

|β|≤l

FβLβ
α(a)

)

|α|≤l
,

where Lβ
α(a) = (∂|α|ϕβ/∂xα)(a)/α! and ϕβ = ϕβ1

1 · · ·ϕβn
n (ϕ = (ϕ1, . . . , ϕn)).

Set Jl
b := Jl(b)⊗K Ôb =

⊕
|β|≤l K[[y − b]]. We put Jl

bF(y) := (DβF(y))|β|≤l ∈ Jl
b.

(Evaluating at b transforms Jl
bF to JlF(b).) The ring homomorphism ϕ̂∗

a : Ôb → Ôa

induces a homomorphism of K[[x − a]]-modules,

Jl
aϕ : Jl(b) ⊗K Ôa

=

⊕
|β|≤l

K[[x − a]]

−→ Jl(a) ⊗K Ôa

=

⊕
|α|≤l

K[[x − a]]

such that if F ∈ Ôb, then

Jl
aϕ

(
(ϕ̂∗

a (DβF))|β|≤l

)
= (Dα(ϕ̂∗

a (F)))|α|≤l.

By evaluation at a, Jl
aϕ induces Jlϕ(a) : Jl(b) → Jl(a). We can identify Jl

aϕ with the
matrix (with rows indexed by α ∈ N

m, |α| ≤ l and columns indexed by β ∈ N
n,

|β| ≤ l) whose entries are the Taylor expansions at a of Dαϕβ = (∂|α|ϕβ/∂xα)/α!
for |α| ≤ l, |β| ≤ l.
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Let a = (a1, . . . , as) ∈ Ms
ϕ and b = ϕ(a). For each i = 1, . . . , s, the homomor-

phism Jl
b = Jl(b) ⊗K Ôb → Jl(ai) ⊗K Ôai = Jl

ai over ϕ̂∗
ai , as defined above (using a

coordinate system xi = (xi
1, . . . , xi

m) for M in a neighbourhood of ai), followed by the

canonical homomorphism Jl(ai)⊗K Ôai → Jl(ai)⊗K ÔMs
ϕ,a over (ρ̂i)∗a : Ôai → ÔMs

ϕ,a,

induces an ÔMs
ϕ,a-homomorphism Jl(b)⊗K ÔMs

ϕ,a → Jl(ai)⊗K ÔMs
ϕ,a. We thus obtain

an ÔMs
ϕ,a-homomorphism

Jl
aϕ : Jl(b) ⊗K ÔMs

ϕ ,a
=

⊕
|β|≤l

ÔMs
ϕ,a

−→
s⊕

i=1

Jl(ai) ⊗K ÔMs
ϕ,a

=

s⊕
i=1

⊕
|α|≤l

ÔMs
ϕ,a.

For any (germ at a of an) analytic subspace L of Ms
ϕ, we also write

(2.2) Jl
aϕ : Jl(b) ⊗K ÔL,a →

s⊕
i=1

Jl(ai) ⊗K ÔL,a,

for the induced ÔL,a-homomorphism. Evaluation at a transforms Jl
aϕ to

(2.3) Jlϕ(a) = ( Jlϕ(a1), . . . , Jlϕ(as)) : Jl(b) →
s⊕

i=1

Jl(ai).

3 Ideals of Relations and Chevalley Functions

Let M be an analytic manifold (over K = R or C), and let ϕ = (ϕ1, . . . , ϕn) : M →
K

n be an analytic mapping. If a ∈ M, let Ra denote the ideal of formal relations
Ker ϕ̂∗

a .

Remark 3.1 Ra is constant on connected components of the fibres of ϕ [3, Lemma
5.1].

Let s be a positive integer, and let a = (a1, . . . , as) ∈ Ms
ϕ. Put

(3.1) Ra :=
s⋂

i=1

Rai =

s⋂
i=1

Ker ϕ̂∗
ai ⊂ Ôϕ(a).

If k ∈ N, we also write

R
k(a) :=

Ra + m̂
k+1
ϕ(a)

m̂k+1
ϕ(a)

⊂ Jk(ϕ(a)).

If b ∈ K
n, let πk(b) : Ôb → Jk(b) denote the canonical projection. For l ≥ k, let

πlk(b) : Jl(b) → Jk(b) be the projection. Set

El(a) := Ker Jlϕ(a), and Elk(a) := πlk(ϕ(a)).El(a).
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3.1 Chevalley’s Lemma

Lemma 3.2 ([2, Lemma 8.2.2]; cf. [4, §II, Lemma 7]) Let a ∈ Ms
ϕ, a = (a1, . . . , as).

For every k ∈ N, there exists l ∈ N such that Rk(a) = Elk(a), i.e., such that if F ∈ Ôϕ(a)

and ϕ̂∗
ai (F) ∈ m̂

l+1
ai , i = 1, . . . , s, then F ∈ Ra + m̂

k+1
ϕ(a).

We write l(a, k) = lϕ∗(a, k) for the least l satisfying the conclusion of the lemma.

Proof of Lemma 3.2 If k ≤ l1 ≤ l2, then Rk(a) ⊂ El2,k(a) ⊂ El1,k(a), and the
projection πl2,l1 (ϕ(a)) maps

⋂
l≥l2

Ell2 (a) onto
⋂

l≥l1
Ell1 (a). It follows that Rk(a) =⋂

l≥k Elk(a). Since dim Jk(ϕ(a)) < ∞, there exists l ∈ N such that Rk(a) = Elk(a).

3.2 Generic Chevalley Function

Let a ∈ Ms
ϕ and k ∈ N. Set

Ha(k) := dimK

Jk(ϕ(a))

Rk(a)
, dlk(a) := dimK

Jk(ϕ(a))

Elk(a)
, if l ≥ k

(Ha is the Hilbert-Samuel function of Ôϕ(a)/Ra).

Remark 3.3 We have dlk(a) ≤ Ha(k) since Rk(a) ⊂ Elk(a). Also Rk(a) = Elk(a)
(and dlk(a) = Ha(k)) if and only if l ≥ l(a, k).

Lemma 3.4 ([2, Lemma 8.3.3]) Let L be a subanalytic leaf in Ms
ϕ, i.e., a connected

subanalytic subset of Ms
ϕ which is an analytic submanifold of Ms. (See Remark 4.4).

Then there is a residual subset D of L such that if a, a′ ∈ D, then Ha(k) = Ha ′(k) and

l(a, k) = l(a′, k), for all k ∈ N.

Definition 3.5 We define the generic Chevalley function of L as l(L, k) := l(a, k)

(k ∈ N), where a ∈ D.

Proof of Lemma 3.4 For a ∈ Ms
ϕ and l ≥ k, write Jlϕ(a) (2.3) (using local coordi-

nates for Ms as in §2.4, in a neighbourhood of a point of L) as a block matrix

Jlϕ(a) = (Slk(a), T lk(a)) =

(
Jkϕ(a) 0
∗ ∗

)

corresponding to the decomposition of vectors ξ = (ξβ)β∈Nn,|β|≤l in the source as

ξ = (ξk, ζ lk), where ξk = (ξβ)|β|≤k and ζ lk = (ξβ)k<|β|≤l. Then

Elk(a) = {η = (ηβ)|β|≤k : Slk(a) · η ∈ Im T lk(a)}.

Thus, by Lemma 2.1, Elk(a) = Ker Θ
lk(a) and dlk(a) = rk Θ

lk(a), where

Θ
lk(a) := adrlk(a) T lk(a) · Slk(a), rlk(a) := rk T lk(a).
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Set rlk(L) := maxa∈L rlk(a) and dlk
L (a) := rk Θlk

L (a), a ∈ L, where

Θ
lk
L (a) := adrlk(L) T lk(a) · Slk(a)

(so that Θ
lk
L (a) = 0 if rlk(a) < rlk(L)). Let Y lk := {a ∈ L : rlk(a) < rlk(L)}. Set

dlk(L) := max
a∈L

dlk
L (a) .

Clearly, dlk
L (a) = 0 if a ∈ Y lk, and dlk

L (a) = dlk(a) if a ∈ L \ Y lk. Also set

Zlk := Y lk ∪
{

a ∈ L : dlk
L (a) < dlk(L)

}
.

Then Y lk and Zlk are proper closed analytic subsets of L. For all a ∈ L \ Zlk, rlk(a) =

rlk(L) and dlk(a) = dlk
L (a) = dlk(L). Put

Dk := L \
⋃
l>k

Zlk, D :=
⋂

k≥1

Dk.

By the Baire category theorem, the Dk (and hence also D) are residual subsets of L.
Fix k ∈ N. If a ∈ Dk, then dlk(a) = dlk(L), for all l > k. If, in addition, l ≥ l(a, k),

then Ha(k) = dlk(L), by Remark 3.3. If a, a′ ∈ Dk, then choosing l ≥ l(a, k) and ≥
l(a ′, k), we get Ha(k) = Ha ′(k). For the second assertion of the lemma, suppose that

l ≥ l(a, k). Then Ha ′(k) = Ha(k) = dlk(a) = dlk(L) = dlk(a ′), so that l ≥ l(a ′, k), by
Remark 3.3. In the same way, l ≥ l(a ′, k) implies that l ≥ l(a, k).

3.3 Chevalley Function of a Subanalytic Set

Let N denote a real-analytic manifold, and let X be a closed subanalytic subset of N .

If b ∈ X, then Fb(X) or Rb ⊂ Ôb denotes the formal local ideal of X at b, in the sense

of the following simple lemma.

Lemma 3.6 Let b ∈ X. The following three definitions of Fb(X) are equivalent:

(i) Let M be a real-analytic manifold and let ϕ : M → N be a proper real-analytic

mapping such that X = ϕ(M). Then Fb(X) =
⋂

a∈ϕ−1(b) Ker ϕ̂∗
a .

(ii) Fb(X) =
{

F ∈ Ôb : (F ◦ γ)(t) ≡ 0 for every real-analytic arc γ(t) in X such

that γ(0) = b
}

.

(iii) Fb(X) = {F ∈ Ôb : Tk
b F(y) = o(|y − b|k), where y ∈ X, for all k ∈ N}. Here

Tk
b F(y) denotes the Taylor polynomial of order k of F at b, in any local coordinate

system.

Assume that N = R
n, with coordinates y = (y1, . . . , yn). Let b ∈ X. Recall (1.1).

Remark 3.7 We have νX,b(F) ≤ µX,b(F), as follows. Suppose that F ∈ m̂
l
b + Fb(X),

say F = G + H, where G ∈ m̂
l
b and H ∈ Fb(X). Then |T l

bG(y)| ≤ c|y − b|l and

T l
bH(y) = o(|y − b|l), y ∈ X, by Lemma 3.6. Hence |T l

bF(y)| ≤ const |y − b|l on X.
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Definition 3.8 (Chevalley functions) Let b ∈ X and let k ∈ N. Set

lX(b, k) := min{l ∈ N : if F ∈ Ôb and µX,b(F) > l, then νX,b(F) > k}.

Let ϕ : M → N be a proper real-analytic mapping such that X = ϕ(M). Set

lϕ∗(b, k) := min
{

l ∈ N : if F ∈ Ôb and νM,a(ϕ̂∗
a (F)) > l

for all a ∈ ϕ−1(b), then νX,b(F) > k
}

.

Remark 3.9 Suppose that b = ϕ(a), where a = (a1, . . . , as) ∈ Ms
ϕ, s ≥ 1. By

Lemma 3.2, lϕ∗(a, k) < ∞. If a includes a point ai in every connected component
of ϕ−1(b), then

⋂s
i=1 Ker ϕ̂∗

ai = Fb(X) (by Remark 3.1 and Lemma 3.6), so that

lϕ∗(b, k) ≤ lϕ∗(a, k).

Lemma 3.10 (see [3, Lemma 6.5]) Let ϕ : M → N be a proper real-analytic mapping

such that X = ϕ(M). Then lX(b, ·) ≤ lϕ∗(b, ·) for all b ∈ X.

4 Proofs of the Main Theorems

Let ϕ : M → K
n be an analytic mapping from a manifold M (over K = R or C). Let

s be a positive integer. Let a = (a1, . . . , as) ∈ Ms
ϕ, and let b = ϕ(a).

Remark 4.1 By (2.1), the Chevalley functions lϕ∗(a, k) and lϕ∗(b, k) (Definition
3.8) can be defined using power series that are supported outside the diagram of
initial exponents. Set Na := N(Ra) and Nb := N(Rb) (cf. (3.1) and Lemma 3.6).
Then

lϕ∗(a, k) = min{l ∈ N : if F ∈ Ô
Na

b and ϕ̂∗
ai (F) ∈ m̂

l+1
ai , i = 1, . . . , s,

then F ∈ Ra + m̂
k+1
b },

lϕ∗(b, k) = min{l ∈ N : if F ∈ Ô
Nb

b and ϕ̂∗
a (F) ∈ m̂

l+1
a , for all a ∈ ϕ−1(b),

then F ∈ Rb + m̂
k+1
b }.

(In the latter, we assume that ϕ is a proper real-analytic mapping.)

If l ∈ N, set Jl(b)Na := {ξ = (ξβ)|β|≤l ∈ Jl(b) : ξβ = 0 if β ∈ Na}. Con-

sider the linear mapping Φl(a) : Jl(b)Na →
⊕s

i=1 Jl(ai) obtained by restriction of
Jlϕ(a) : Jl(b) →

⊕
Jl(ai) (2.3). Given k ≤ l, write Φl(a) as a block matrix

Φ
l(a) = (Alk(a), Blk(a)),

where Alk(a) is given by the restriction of Φl(a) to Jk(b)Na .
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Remark 4.2 If ξ ∈ Jl(b)Na , write ξ = (η, ζ) corresponding to this block decom-
position. Then l ≥ lϕ∗(a, k) if and only if Alk(a)η + Blk(a)ζ = 0 implies η = 0

[3, Lemma 8.13].

Lemma 4.3 (cf. [3, Proposition 8.15]) Let s ≥ 1 and consider ϕ = ϕs : Ms
ϕ →

R
n. Let L be a relatively compact subanalytic leaf in Ms

ϕ (cf. Lemma 3.4) such that

Na = N(Ra) is constant on L. Let l(k) = l(L, k) denote the generic Chevalley function

of L. Then there exists p ∈ N such that lϕ∗(a, k) ≤ l(k) + p, for all a ∈ L and k ∈ N.

Proof Set N = Na, a ∈ L. We can assume that L lies in a coordinate chart for Ms as in
§2.4. Let k ∈ N and let l = l(k). Let a = (a1, . . . , as) ∈ L, and set b = ϕ(a). Consider

the linear mapping Φl(a) = (Alk(a), Blk(a)) : Jl(b)N →
⊕s

i=1 Jl(ai) as above. The

ÔL,a-homomorphism Jl
aϕ : Jl(b) ⊗K ÔL,a →

⊕s
i=1 Jl(ai) ⊗K ÔL,a (2.2) induces an

ÔL,a-homomorphism

Φ
l
a = (Alk

a , Blk
a ) : Jl(b)N ⊗K ÔL,a →

s⊕
i=1

Jl(ai) ⊗K ÔL,a;

evaluating at a transforms Φl
a to Φl(a) = (Alk(a), Blk(a)).

Let r = rk Blk
a , so r is the generic rank of Blk(x), x ∈ L. Let Θa = adr Blk

a ·Alk
a . Then

Ker Θa = 0 (i.e., Ker Θ(x) = 0 generically on L, where Θ(x) = adr Blk(x) · Alk(x), by
Remark 4.2). Let d = rk Θa. Then there is a nonzero minor δa ∈ OL,a of Θa of order
d; δa is induced by a minor δ(x) of order d of Θ(x), x ∈ L, such that δ(x) 6= 0 on a

residual subset of L. Since δ is a restriction to L of an analytic function defined in a
neighbourhood of L, the order of δx, x ∈ L, is bounded on L, say δx ≤ p.

We claim that lϕ∗(a, k) ≤ l(k) + p for all a ∈ L. Let a = (a1, . . . , as) ∈ L, and let

b = ϕ(a). Let l = l(k) and l ′ = l + p. Suppose that F ∈ ÔN

b and ϕ̂∗
ai (F) ∈ m̂

l ′+1
ai ,

i = 1, . . . , s. Let ξ̂a = (η̂a, ζ̂a) denote the element of Jl(b)N ⊗K ÔL,a induced by

Jl
bF ∈ Jl(b) ⊗K Ôb via the pull-back. Then each component of Alk

a η̂a + Blk
a ζ̂a belongs

to m̂
l ′+1−l
L,a (as we see by taking formal derivatives of order≤ l of the ϕ̂∗

ai (F)). It follows
that each component of Θaη̂a, and therefore (by Cramer’s rule) each component of

δa · η̂a, belongs to m̂
l ′+1−l
L,a . Thus, each component of η̂a lies in m̂

l ′+1−l−p
L,a = m̂L,a, i.e.,

η̂a(a) = 0, so that F vanishes to order k at b = ϕ(a).

Proof of Theorem 1.1 By [2, Theorems A,C], there is a locally finite partition of M

into relatively compact subanalytic leaves L such that the diagram of initial exponents
Na = N(Ra) is constant on each L. Given L, let l(L, k) denote the generic Chevalley
function. (In particular, l(L, k) = lϕ∗(a, k), for all a in a residual subset of L.) Since

ϕ is regular, there exist αL, γL such that l(L, k) ≤ αLk + γL, for all k ∈ N (by [10]). By
Lemma 4.3 (in the case s = 1), there exists pL ∈ N such that lϕ∗(a, k) ≤ αLk+γL + pL,
for all a ∈ L and all k. The result follows.

Remark 4.4 In the case K = C, we define “subanalytic leaf” using the underlying
real structure. If ϕ is regular, then the diagram Na is, in fact, an upper-semicontin-
uous function of a, with respect to the K-analytic Zariski topology of M (and a nat-
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ural total ordering of {N ∈ N
n : N + N

n = N}) [2, Theorem C], but we do not need
the more precise result here.

Lemma 4.5 Let s ≥ 1 and let a = (a1, . . . , as) ∈ Ms
ϕ. Suppose that ϕ is regular at

a1, . . . , as. Then there exist α, β ∈ R such that lϕ∗(a, k) ≤ αk + β, for all k ∈ N.

Proof Let b = ϕ(a). For each i = 1, . . . , s, since ϕ is regular at ai , there exist αi , βi

such that

(4.1) lϕ∗(ai , k) ≤ αik + βi, for all k.

Of course,
⋂s

i=1 Ker ϕ̂∗
ai is the kernel of the homomorphism Ôb →

⊕s
i=1 Ôb/ Ker ϕ̂∗

ai .
By the Artin–Rees lemma (see Remark 1.4), there exists λ ∈ N such that if F ∈
m̂

k+λ
b + Ker ϕ̂∗

ai , i = 1, . . . , s, then

(4.2) F ∈ m̂
k
b +

s⋂
i=1

Ker ϕ̂∗
ai .

Now let F ∈ Ôb and suppose that ϕ̂∗
ai (F) ∈ m̂

αi (λ+k)+βi +1
ai , i = 1, . . . , s. Then

F ∈ m̂
λ+k+1
b + Ker ϕ̂∗

ai , i = 1, . . . , s, by (4.1), so that F ∈ m̂
k+1
b +

⋂s
i=1 Ker ϕ̂∗

ai , by (4.2).

In other words, lϕ∗(a, k) ≤ αk+β, where α = max αi and β = λ max αi+max βi .

Proof of Theorem 1.2 Suppose that ϕ : M → R
n is a real-analytic mapping and M

is compact. Let X = ϕ(M). Let s ≥ 1, a ∈ Ms
ϕ, b = ϕ(a). If a = (a1, . . . , as) includes

a point ai in every connected component of ϕ−1(b), then

(4.3) lX(b, k) ≤ lϕ∗(a, k),

by Remark 3.9 and Lemma 3.10.
Let L be a relatively compact subanalytic leaf in Ms

ϕ, such that Na = N(Ra) is

constant on L. Suppose that ϕ is regular at ai , for all a = (a1, . . . , as) ∈ L and

i = 1, . . . , s. Let l(L, k) denote the generic Chevalley function of L. By Lemma 4.5,
there exist α, β such that l(L, k) ≤ αk + β. Therefore, by Lemma 4.3, there exist
αL, βL such that

(4.4) lϕ∗(a, k) ≤ αLk + βL, for all a ∈ L.

To prove the theorem, we can assume that X is compact. Let ϕ be a mapping
as above, such that X = ϕ(M). We consider first the case that X is Nash. Then
we can assume that ϕ is regular. Let s denote a bound on the number of connected

components of a fibre ϕ−1(b), for all b ∈ X. Then there is a finite partition of Ms
ϕ into

relatively compact subanalytic leaves L, such that Na = N(Ra) is constant on every L.
By (4.3) and (4.4), for each L, there exist αL, βL such that lX(b, k) ≤ αLk + βL, for all
b ∈ ϕ(L) and all k. Therefore, lX(b, k) has a uniform linear bound.

Finally, we consider X formally Nash. Let NR(ϕ) ⊂ M denote the set of points at
which ϕ is not regular. Then NR(ϕ) is a nowhere-dense closed analytic subset of M

[11, Theorem 1]. For each positive integer s, set

NR(ϕs) := Ms
ϕ ∩

s⋃
i=1

{a = (a1, . . . , as) ∈ Ms : ai ∈ NR(ϕ)};
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then NR(ϕs) is a closed analytic subset of Ms
ϕ.

If b ∈ X and a, a ′ belong to the same connected component of ϕ−1(b), then ϕ is
regular at a if and only if ϕ is regular at a ′ (cf. Remark 3.1). Let t be a bound on the
number of connected components of a fibre ϕ−1(b), for all b ∈ X. For each s ≤ t ,
define Xs := {b ∈ X : ϕ−1(b) has precisely s regular components} and Ys := {b ∈
X : ϕ−1(b) has at least s regular components}. Then Xs = Ys \ Ys+1, and

Ys = ϕs(M̊s
ϕ \ NR(ϕs));

in particular, all the Xs and Ys are subanalytic (cf. §3.2).

The hypothesis of the theorem implies: (i) X =
⋃t

s=1 Xs; (ii) if b ∈ Xs and

a ∈ (ϕs)−1(b)
⋂

(M̊s
ϕ \ NR(ϕs)), then Ra = Rb. ((ii) follows from the fact that

Fb(X) = Fb(Yb), where Yb is some closed Nash subanalytic subset of X, and (i) from
the fact that the latter condition holds for all b ∈ X.)

By [11, Theorem 2], for each s, there is a finite stratification Ls of Ms
ϕ compatible

with NR(ϕs) such that Na = N(Ra) is constant on every stratum L ⊂ Ms
ϕ \ NR(ϕs),

L ∈ Ls. Clearly,

Xs =

⋃

L∈Ls

L⊂Ms
ϕ\NR(ϕs)

ϕs(L ∩ M̊s
ϕ) ∩ Xs;

hence

X =

t⋃

s=1

⋃

L∈Ls

L⊂Ms
ϕ\NR(ϕs)

ϕs(L ∩ M̊s
ϕ).

Again by (4.3) and (4.4), for each L, there exist αL, βL such that lX(b, k) ≤ αLk + βL,
for all b ∈ ϕ(L) and all k. The result follows.

References

[1] E. Bierstone and P. D. Milman, Composite differentiable functions. Ann. of Math. 116(1982), no. 3,
541–558.

[2] , Relations among analytic functions. I. Ann. Inst. Fourier (Grenoble) 37(1987), no. 1,
187–239; Relations among analytic functions. II. 37(1987), no. 2, 49–77.

[3] , Geometric and differential properties of subanalytic sets. Ann. of Math. 147(1998), no. 3,
731–785.

[4] C. Chevalley, On the theory of local rings. Ann. of Math. 44(1943), 690–708.
[5] A. J. Duncan and L. O’Carroll, A full uniform Artin-Rees theorem. J. Reine Agnew. Math.

394(1989), 203–207.
[6] A. M. Gabrielov, Formal relations between analytic functions. Math. USSR Izv. 7(1973), 1056–1088.
[7] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II.

Ann. of Math. 79 (1964), 109–326.
[8] C. Huneke, Uniform bounds in Noetherian rings. Invent. Math. 107(1992), no. 1, 203–223.
[9] S. Izumi, Linear complementary inequalities for orders of germs of analytic functions. Invent. Math.

65(1982), no. 3, 459–471.
[10] , Gabrielov’s rank condition is equivalent to an inequality of reduced orders. Math. Ann.

276(1986), no. 1, 81–89.



Uniform Linear Bound in Chevalley’s Lemma 733

[11] W. Pawłucki, On Gabrielov’s regularity condition for analytic mappings. Duke Math. J. 65(1992),
no. 2, 299–311.

[12] T. Wang, Linear Chevalley estimates. Trans. Amer. Math. Soc. 347(1995), no. 12, 4877–4898.

Institute of Mathematics of the Polish Academy of Sciences, 00-956 Warszawa 10, Sniadeckich 8, Poland

Current address: Department of Mathematics, University of Western Ontario, London, ON N6A 5B7
e-mail: jadamus@uwo.ca

Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4
e-mail: bierston@math.toronto.edu

milman@math.toronto.edu


