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EXTENSIONS OF ARC-ANALYTIC FUNCTIONS

JANUSZ ADAMUS AND HADI SEYEDINEJAD

Abstract. We prove that every arc-analytic semialgebraic function on an arc-
symmetric set X in Rn admits an arc-analytic semialgebraic extension to the
whole Rn.

1. Introduction

Arc-analytic functions play an important role in modern real algebraic and an-
alytic geometry (see, e.g., [14] and the references therein). They are, however,
hardly known outside the specialist circles, which is perhaps partly due to their
rather surprising, if not pathological, behaviour in the general analytic setting (see
[5]). In the algebraic setting, on the other hand, arc-analytic functions form a very
nice family, as our main result will hopefully contribute to attesting to.

Let us recall that a function f : X → R is called arc-analytic when f ◦ γ is an
analytic function for every real analytic arc γ : (−1, 1) → X . Typically, in the
literature, X is assumed to be a smooth real algebraic or analytic variety, or a
semialgebraic set.

In this article, we are interested in semialgebraic arc-analytic functions in the
setting in which they were originally introduced by Kurdyka [13], that is, on arc-
symmetric semialgebraic sets. Recall that a semialgebraic set in Rn is one that
can be written as a finite union of sets of the form {x ∈ Rn : p(x) = 0, q1(x) >
0, . . . , qr(x) > 0}, where r ∈ N and p, q1, . . . , qr ∈ R[x1, . . . , xn]. A semialgebraic
set X ⊂ Rn is called arc-symmetric if, for every analytic arc γ : (−1, 1) → Rn

with γ((−1, 0)) ⊂ X , we have γ((−1, 1)) ⊂ X . A function f : X → R is a
semialgebraic function when its graph is a semialgebraic subset of Rn+1. Every
arc-analytic semialgebraic function on an arc-symmetric set is continuous in the
Euclidean topology ([13, Prop. 5.1]).

By a fundamental theorem [13, Thm. 1.4], the arc-symmetric semialgebraic sets
are precisely the closed sets of a certain noetherian topology on Rn. (A topology is
called noetherian when every descending sequence of its closed sets is stationary.)
Following [13], we will call it the AR topology, and the arc-symmetric semialgebraic
sets will henceforth be called AR-closed sets.

Given an AR-closed set X in Rn, we denote by Aa(X) the ring of arc-analytic
semialgebraic functions on X . The elements of Aa(X) play the role of ‘regular
functions’ in AR geometry. Indeed, it is not difficult to see ([13, Prop. 5.1]) that
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the zero locus of every arc-analytic semialgebraic function f : X → R is AR-
closed. Recently, it was also shown ([1, § 1, Thm. 1]) that every AR-closed set
may be realized as the zero locus of an arc-analytic function. Therefore, the AR

topology is, in fact, the one defined by arc-analytic semialgebraic functions.

In [1], we conjectured that every arc-analytic semialgebraic function on an AR-
closed set X in Rn is a restriction of an element of Aa(R

n). Theorem 1 gives an
affirmative answer to this conjecture.

If X is an AR-closed sets in Rn, we denote by I(X) the ideal in Aa(R
n) of the

functions that vanish on X .

Theorem 1. Let X be an AR-closed set in Rn, and let f : X → R be an arc-
analytic semialgebraic function. Then, there exists an arc-analytic semialgebraic
F : Rn → R such that F |X = f . In other words,

Aa(X) ≃ Aa(R
n)/I(X)

as R-algebras.

Remark 1. The above theorem seems particularly interesting in the context of
continuous rational functions. Following [10], we will call f : X → R a continuous
rational function when f is continuous (in the Euclidean topology) and there exist

a Zariski open dense subset Y in the Zariski closure X
Zar

and a regular function
F : Y → R such that f |X∩Y = F |X∩Y . Continuous rational functions have been
extensively studied recently (see, e.g., [12], [11], [8], [10]).

It follows from the proof of [10, Thm. 1.12] (which works also in the AR setting)
that every continuous rational function on an AR-closed set X ⊂ Rn is an ele-
ment of Aa(X), and hence admits an arc-analytic semialgebraic extension to Rn.
However, in general, a continuous rational function on X cannot be extended to a
continuous rational function on Rn, even if X is Zariski closed (see [11, Ex. 2]). To
overcome this problem, Kollár and Nowak introduced the notion of a hereditarily
rational function, that is, a continuous function on an algebraic set which remains
rational after restriction to an arbitrary algebraic subset (see [11] for details). The
main result of [11] asserts that a function f : Z → R on an algebraic set Z ⊂ Rn is
hereditarily rational if and only if f admits a continuous rational extension to Rn.

We shall prove Theorem 1 in Section 3. We show some immediate corollaries of
our main result in Section 4. For the reader’s convenience, in Section 2, we recall
basic notions and tools used in this note.

2. Preliminaries

2.1. AR-closed sets. First, we shall recall several properties of AR-closed sets
that will be used throughout the paper. For details and proofs we refer the reader
to [13].

The class of AR-closed sets includes, in particular, the algebraic sets as well
as the Nash sets (see below). The AR topology is strictly finer than the Zariski
topology on Rn (see, e.g., [13, Ex. 1.2]). Moreover, it follows from the semialgebraic
Curve Selection Lemma that AR-closed sets are closed in the Euclidean topology
on Rn (see [13, Rem. 1.3]).

An AR-closed set X is called AR-irreducible if it cannot be written as a union of
two proper AR-closed subsets. It follows from noetherianity of the AR topology
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([13, Prop. 2.2]) that every AR-closed set admits a unique decomposition X =
X1∪· · ·∪Xr into AR-irreducible sets satisfying Xi 6⊂

⋃
j 6=i Xj for each i = 1, . . . , r.

The sets X1, . . . , Xr are called the AR-components of X .
Noetherianity of the AR-topology implies as well that an arbitrary family of

AR-closed sets has a well defined intersection. In particular, one can define an
AR-closure of a set E in Rn as the intersection of all AR-closed sets in Rn which
contain E.

For a semialgebraic set E in Rn, let E
Zar

denote the Zariski closure of E, that

is, the smallest real-algebraic subset of Rn containing E. Similarly, let E
AR

denote
the AR-closure of E in Rn. Consider the following three kinds of dimension of E:

• the geometric dimension dimgE, defined as the maximum dimension of a
real-analytic submanifold of (an open subset of) Rn contained in E,

• the algebraic dimension dimaE, defined as dimE
Zar

,
• the AR topological (or Krull) dimension dimKE, defined as the maximum

length l of a chain X0 ( X1 ( · · · ( Xl ⊂ E
AR

, where X0, . . . , Xl are
AR-irreducible.

It is well known that dimgE = dimaE (see, e.g., [6, Sec. 2.8]). By [13, Prop. 2.11],
we also have dimaE = dimKE. We shall denote this common dimension simply as
dimE. By convention, dim∅ = −1.

2.2. Blowings-up and desingularization. An essential tool in the proof of The-
orem 1 is the blowing-up of Rn at a Nash subset. Recall that a subset Z of a
semialgebraic open U ⊂ Rn is called Nash if it is the zero locus of a Nash function
f : U → R. A function f : U → R is called a Nash function if it is an analytic
algebraic function on U , that is, a real-analytic function such that there exists a
non-zero polynomial P ∈ R[x, t] with P (x, f(x)) = 0, for every x ∈ U . We denote
the ring of all Nash functions on U by N (U). We refer the reader to [6, Ch. 8] for
details on Nash sets and mappings.

Let Z be a Nash subset of Rn. Consider the ideal I(Z) inN (Rn) of all Nash func-
tions on Rn vanishing on Z. By noetherianity of N (Rn) (see, e.g., [6, Thm. 8.7.18]),
there are f1, . . . , fr ∈ N (Rn) such that I(Z) = (f1, . . . , fr). Set

R̃ := {(x, [u1, . . . , ur]) ∈ Rn × RPr−1 : uifj(x) = ujfi(x) for all i, j = 1, . . . , r} .

The restriction σ : R̃ → Rn to R̃ of the canonical projection Rn × RPr−1 → Rn is

the blowing-up of Rn at (the centre) Z. One can verify that R̃ is independent of
the choice of generators f1, . . . , fr of I(Z). Since a real projective space is an affine

algebraic set (see, e.g., [6, Thm. 3.4.4]), one can assume that R̃ is a Nash subset of
RN for some N ∈ N. If X is a Nash subset of Rn, then the smallest Nash subset

X̃ of R̃ containing σ−1(X \ Z) is called the strict transform of X (by σ). In this

case, if Z ⊂ X , then we may also call X̃ the blowing-up of X at Z.

For a semialgebraic set E and a natural number d, we denote by Regd(E) the
semialgebraic set of those points x ∈ E at which Ex is a germ of a d-dimensional
analytic manifold. If dimE = k, then dim(E \ Regk(E)) < dimE.

For a real algebraic set X , we denote by Sing(X) the singular locus of X in
the sense of [6, § 3.3]. Then, Sing(X) is an algebraic set of dimension strictly less
than dimX . Note that, in general, we may have Sing(X) ) X \ Regk(X), where
k = dimX .
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Recall that every algebraic set X in Rn admits an embedded desingularization.

That is, there exists a proper mapping π : R̃ → Rn which is the composition
of a finite sequence of blowings-up with smooth algebraic centres, such that π
is an isomorphism outside the preimage of the singular locus Sing(X) of X , the

strict transform X̃ of X is smooth, and X̃ and π−1(Sing(X)) simultaneously have

only normal crossings. (The latter means that every point of R̃ admits a (local

analytic) coordinate neighbourhood in which X̃ is a coordinate subspace and each
hypersurface H of π−1(Sing(X)) is a coordinate hypersurface.) For details on
resolution of singularities we refer the reader to [4] or [9].

2.3. Nash functions on monomial singularities. Another key component in
the proof of Theorem 1 is the behaviour of Nash functions on the so-called monomial
singularities, studied in [2]. Let M ⊂ Rn be an affine Nash submanifold, that is, a
semialgebraic set which is a closed real analytic submanifold of an open set in Rn.
Let X ⊂ M and let ξ ∈ X . We say that the germ Xξ is a monomial singularity
if there is a neighbourhood U of ξ in M and a Nash diffeomorphism u : U → Rm,
with u(ξ) = 0, that maps X ∩ U onto a union of coordinate subspaces. We say
that X is a set with monomial singularities if its germ at every point is a monomial
singularity (possibly smooth).

Given a semialgebraic subset E of an affine Nash submanifold M , a function
f : E → R is called a Nash function on E if there exists an open semialgebraic U
in M , with E ⊂ U , and a Nash function F ∈ N (U) (in the sense defined above)
such that F |E = f . The ring of all Nash functions on E will be denoted by N (E).
If E ⊂ M is a Nash set, then a function f : E → R is called a c-Nash function
when its restriction to each irreducible component of E is Nash. The ring of c-Nash
functions will be denoted by cN (E). Of course, we always have N (E) ⊂ cN (E).
By [2, Thm. 1.6], if E ⊂ M is a Nash set with monomial singularities then

(2.1) N (E) = cN (E) .

3. Proof of Theorem 1

For a semialgebraic set S in Rn and an integer k, we will denote by Reg<k(S)
the semialgebraic set of these points x ∈ S at which Sx is a germ of a manifold of
dimension less than k.

Lemma 1. If X is an AR-closed set of dimension k in Rn, then

X ∩X
Zar

\X ⊂ Sing(X
Zar

) ∪ Reg<k(X) .

Proof. Set Singk(X) := Regk(X) \ Regk(X). Then X can be written as a union

X = Regk(X) ∪ (Singk(X) ∪ Reg<k(X)) .

It is evident that Regk(X) ∩X
Zar

\X ⊂ X
Zar

\ Regk(X
Zar

), and hence

Regk(X) ∩X
Zar

\X ⊂ Sing(X
Zar

) .

It thus suffices to show that Singk(X) ⊂ Sing(X
Zar

). Suppose otherwise, and pick

ξ ∈ Singk(X) ∩ Regk(X
Zar

). Let U be the connected component of Regk(X
Zar

)
that contains ξ. Then, U ∩ X is a non-empty open subset of X . On the other
hand, U \ X 6= ∅, for else Xξ would be a smooth k-dimensional germ. Pick any
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a ∈ U ∩X and b ∈ U \X , and let γ : (−1, 1) → U be an analytic arc in U passing
through a and b (which exists, because U is a connected analytic manifold). Then
γ−1(X) contains a non-empty open subset of (−1, 1), but γ((−1, 1)) 6⊂ X , which
contradicts the arc-symmetry of X . � �

Proof of Theorem 1. Let X be an AR-closed set in Rn. We argue by induction on
dimension of X .

If dimX = 0, then X is just a finite set and hence an extension F : Rn → R may
be even chosen to be polynomial. Suppose then that dimX = k > 0, and every arc-
analytic semialgebraic function on every AR-closed set in Rn of dimension smaller
than k admits an arc-analytic semialgebraic extension to the whole Rn.

Given f ∈ Aa(X), let S(f) denote the locus of points x ∈ Regk(X) such that f
is not analytic at x. Then, S(f) is semialgebraic and dimS(f) ≤ k − 2 (see [15],
and cf. [13, Thm. 5.2]).

Let

Z := Sing(X
Zar

) ∪ S(f) ∪ Reg<k(X)
Zar

.

Since taking Zariski closure of a semialgebraic set does not increase the dimension,
we have dim(Z ∩X) ≤ k − 1. Therefore, by the inductive hypothesis, f |Z∩X can
be extended to an arc-analytic semialgebraic function g : Rn → R. By replacing f
with f − g|X , we may thus assume that

(3.1) f |Z∩X = 0.

We may further extend f to an arc-analytic function on X ∪Z, by setting f |Z := 0,

and hence extend it by 0 to X
Zar

:

(3.2) f |
X

Zar
\X

:= 0.

This extension is arc-analytic. Indeed, by Lemma 1, we have X ∩ X
Zar

\X ⊂ Z,

which, by the arc-symmetry of X , implies that an analytic arc γ in X
Zar

is either
entirely contained in X or else it intersects X only at points of Z.

Let π : R̃ → Rn be an embedded desingularization ofX
Zar

, and let X̃ be the strict

transform ofX
Zar

. By [13, Thm. 2.6], there are connected components E1, . . . , Es of

X̃, each of dimension k, such that π(E1∪. . .∪Es) = Regk(X). Set E := E1∪· · ·∪Es.
By (3.1) and (3.2), we have f ◦ π|T ≡ 0 for all other connected components T

of X̃, as well as f ◦ π|H ≡ 0 for every hypersurface H of the exceptional locus

π−1(Sing(X
Zar

)).

By [3, Thm. 1.1], there exists a finite composition of blowings-up σ : Ř → R̃
(with smooth Nash centres) which converts the arc-analytic semialgebraic function
f ◦ π|E into a Nash function f ◦ π ◦ σ|Ě , where the Nash manifold Ě is the strict
transform of E by σ. Moreover, by [15, Thm. 1.3], the centres of the blowings-up
in σ can be chosen so that σ is an isomorphism outside the preimage of S(f ◦ π).
Consequently, one can assume that π ◦ σ is an isomorphism outside the preimage
of Z.

Let W := (π ◦ σ)−1(X
Zar

). By the above, the singular locus of W is contained

in (π ◦ σ)−1(Z). Let τ : R̂ → Ř be an embedded desingularization of W (with

smooth Nash centres), and let Ŵ be the strict transform of W . Further, let Ê be
the strict transform of Ě, and let Σ denote the exceptional locus of τ . Since the

real projective space is an affine algebraic variety, we may assume that R̂ ⊂ RN
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for some N ∈ N. Notice that, by (3.1) and (3.2), f ◦ π ◦ σ ◦ τ is a continuous

function on Ŵ ∪ Σ, which vanishes identically on every irreducible component of

Ŵ which is not contained in Ê, as well as on every irreducible component of Σ.
Since f ◦ π ◦ σ ◦ τ |

Ê
is Nash, by construction, it follows that f ◦ π ◦ σ ◦ τ is Nash

when restricted to every (Nash) irreducible component of Ŵ ∪ Σ. We will write f̂
for f ◦ π ◦ σ ◦ τ |

Ŵ∪Σ
, for short.

We claim that f̂ can be extended to a Nash function F̂ : U → R on an open

semialgebraic neighbourhood U of Ŵ ∪Σ in RN . Indeed, the set Ŵ ∪ Σ is a finite
union of Nash submanifolds of RN which simultaneously have only normal crossings.

Therefore, by (2.1), f̂ admits a required Nash extension if and only if f̂ |T can be
extended to a Nash function on an open semialgebraic neighbourhood of T in RN

for every irreducible component T of Ŵ ∪ Σ. Let then T be such an irreducible
component. Since T is a Nash submanifold of RN , it has a tubular neighbourhood.
That is, there exists an open semialgebraic neighbourhood UT of T in RN with a

Nash retraction ̺T : UT → T (see [6, Cor. 8.9.5]). We may thus extend f̂ |T to a

Nash function F̂T : UT → R by setting F̂T (x) := f̂(̺T (x)) for all x ∈ UT . This

proves the existence of F̂ .
Now, by the Efroymson extension theorem (see [7], or [6, Thm. 8.9.12]), the

function F̂ admits a Nash extension to the whole RN ; i.e., there exists G ∈ N (RN )

such that G|U = F̂ . Then, G|H ≡ 0 for every hypersurface H of the exceptional

locus of τ , since this is the case for F̂ .
Finally, we define the extension F : Rn → R of f as

F (x) :=

{
(G ◦ τ−1 ◦ σ−1 ◦ π−1)(x) if x /∈ Z

0 if x ∈ Z .

To see that F is arc-analytic, let γ : (−1, 1) → Rn be an analytic arc. Let γ̃ :

(−1, 1) → R̃ be the lifting of γ by π, let γ̌ : (−1, 1) → Ř be the lifting of γ̃ by σ,
and let γ̂ : (−1, 1) → RN be the lifting of γ̌ by τ . We claim that

(3.3) F ◦ γ = G ◦ γ̂ ,

which implies that F ◦ γ is analytic. Indeed, if γ(t) /∈ Z for some t ∈ (−1, 1),
then (3.3) holds because (G ◦ τ−1 ◦ σ−1 ◦ π−1)(γ(t)) = (G ◦ τ−1 ◦ σ−1)(γ̃(t)) =
(G ◦ τ−1)(γ̌(t)) = G(γ̂(t)). If, in turn, γ(t) ∈ Z, then γ(t) lifts by π ◦ σ ◦ τ either

to a point z in Ŵ \ Ê or else a point z in the exceptional locus of τ . In either case,
G(z) = 0, by construction, and so G(γ̂(t)) = 0 = F (γ(t)), as required. �

Remark 2. It is evident from the above proof that, in fact, one could choose the

extension F : Rn → R to be analytic outside of Sing(X
Zar

) ∪ S(f) ∪ Reg<k(X)
Zar

(hence, in particular, outside of X
Zar

).

Problem 1. It would be interesting to know if the extension F can be chosen so
that its non-analyticity locus satisfies S(F ) = S(f).

4. Some immediate applications

Arc-analytic semialgebraic functions may be defined and studied on arbitrary
semialgebraic sets (see, e.g., [16]). It is thus natural to ask which semialgebraic sets
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enjoy the extension property from Theorem 1. The following result shows that, in
fact, the arc-symmetric sets are uniquely characterised by the extension property.

Proposition 1. For a semialgebraic set S in Rn, the following conditions are
equivalent:

(i) S is arc-symmetric.
(ii) Every arc-analytic semialgebraic function on S admits an arc-analytic semi-

algebraic extension to the whole Rn.

Proof. The implication (i) ⇒ (ii) is given by Theorem 1. For the converse, let S
be a semialgebraic subset of Rn that is not arc-symmetric. This means that there
exists an analytic arc γ : (−1, 1) → Rn such that γ((−1, 0)) ⊂ S but γ((0, 1)) 6⊂ S.
Pick a point a = (a1, . . . , an) ∈ γ((0, 1)) \ S, and define

f(x) =
1∑n

i=1(xi − ai)2
, where x = (x1, . . . , xn) ∈ Rn .

Then f is an arc-analytic function on S that has no extension to an arc-analytic
function on Rn. Indeed, given any such extension F : Rn → R, we would have
F (γ(t)) = f(γ(t)) for any t ∈ (−1, 0) and hence for any t ∈ (−1, s), where s ∈ (0, 1)
is the minimum parameter such that γ(s) = a. But f(γ(t)) has no left-sided limit at
s, which means that F ◦γ cannot be analytic, and thus F is not arc-analytic. � �

Theorem 1 implies also an arc-analytic variant of the Urysohn lemma. More
precisely, we have the following.

Corollary 1. Let X and Y be disjoint AR-closed sets in Rn. Then, there exists an
arc-analytic semialgebraic function F : Rn → R such that F |X ≡ 0 and F |Y ≡ 1.
In particular, there exist disjoint open semialgebraic sets U and V in Rn such that
X ⊂ U and Y ⊂ V .

Proof. Given X and Y as above, the function f : X ∪ Y → R defined as

f(x) =

{
0, x ∈ X

1, x ∈ Y

is arc-analytic semialgebraic, and the set X ∪ Y is arc-symmetric. Hence, by
Theorem 1, f admits an extension F : Rn → R with the required properties.
Since arc-analytic semialgebraic functions are continuous ([13, Prop. 5.1]), the sets
U := F−1((−∞, 1/2)) and V := F−1((1/2,∞)) are open semialgebraic. Clearly,
U ∩ V = ∅, X ⊂ U , and Y ⊂ V . � �

Remark 3. Note that, in general, disjoint arc-symmetric sets cannot be separated
by a Nash function. Indeed, consider for instance

X = {(x, y, z) ∈ R3 : z(x2 + y2) = x3} \ {(x, y, z) ∈ R3 : x = y = 0, z 6= 0}

and Y = {(0, 0, 1)} in R3. The set X is AR-closed, but its real analytic closure in
R3 is the irreducible algebraic hypersurface Z = {(x, y, z) ∈ R3 : z(x2 + y2) = x3}
(see [13, Ex. 1.2(1)]). It follows that every Nash function f : R3 → R which is
identically zero on X must vanish on the whole Z and thus cannot be equal to 1
on Y .

Similarly, it is easy to construct disjoint AR-closed sets that cannot be separated
by a continuous rational function (cf. [16, Ex. 2.3]).
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