ON ARC-ANALYTIC FUNCTIONS AND ARC-SYMMETRIC SETS

JANUSZ ADAMUS

In this note, we will mostly deal with semialgebraic geometry, that is, the study of real solutions of systems of polynomial equations and inequalities. A semialgebraic set E in \mathbb{R}^{n} is a finite union of sets of the form

$$
\left\{x \in \mathbb{R}^{n}: f(x)=0, g_{1}(x)>0, \ldots, g_{s}(x)>0\right\}
$$

where $s \in \mathbb{N}$ and f, g_{1}, \ldots, g_{s} are polynomials in real variables $x=\left(x_{1}, \ldots, x_{n}\right)$. A function $f: E \rightarrow \mathbb{R}$ is called semialgebraic if its graph Γ_{f} is a semialgebraic subset of $\mathbb{R}^{n} \times \mathbb{R}$. Given an open semialgebraic $U \subset \mathbb{R}^{n}$, a real analytic semialgebraic function $f: U \rightarrow \mathbb{R}$ is called Nash.

Our main object of interest here are the so called arc-analytic functions. A function $f: S \rightarrow \mathbb{R}$ on a set $S \subset \mathbb{R}^{n}$ is said to be arc-analytic when $f \circ \gamma$ is analytic for every real analytic arc $\gamma:(-\varepsilon, \varepsilon) \rightarrow S$.

Arc-analytic functions, although relatively unknown among non-specialists, play an important role in modern real algebraic and analytic geometry (see, e.g., [10] and the references therein). Indeed, Bierstone and Milman [3] proved that arcanalytic semialgebraic functions on a Nash manifold are precisely those that can be made Nash after composition with a finite sequence of blowings-up with smooth algebraic nowhere dense centres. In fact, this criterion is often the quickest way to determine arc-analyticity of a given function. Many classical examples in calculus are arc-analytic but not analytic.
Example 1. (a) The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as $f(x, y)=x^{3} /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$ is arc-analytic but not differentiable at the origin. Observe that f is made Nash after composition with a single blowing-up of the origin; for instance, $f(x, x y)=x /\left(1+y^{2}\right)$. Note also that the graph Γ_{f} of f is not real analytic. In fact, the smallest real analytic subset of \mathbb{R}^{3} containing Γ_{f} is the Cartan umbrella $\left\{(x, y, z) \in \mathbb{R}^{3}: z\left(x^{2}+y^{2}\right)=x^{3}\right\}$ (cf. [9, Ex. 1.2(1)]).
(b) The function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as $g(x, y)=\sqrt{x^{4}+y^{4}}$ is arc-analytic but not \mathcal{C}^{2}. The graph Γ_{g} of g is not real analytic. Indeed, the Zariski closure $\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}=x^{4}+y^{4}\right\}$ of Γ_{g} has two \mathcal{C}^{1} sheets $z= \pm \sqrt{x^{4}+y^{4}}$, but it is irreducible at the origin as a real analytic set (cf. [3, Ex. 1.2(3)]).

In general, the behaviour of arc-analytic functions may be surprising, if not pathological. For example, in [4] the authors construct an arc-analytic function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is not even continuous. However, in the semialgebraic setting, arc-analytic functions form a very nice family.

Arc-analytic functions were first considered by Kurdyka [9] on arc-symmetric semialgebraic sets. A set E in \mathbb{R}^{n} is called arc-symmetric when, for every analytic arc $\gamma:(-1,1) \rightarrow \mathbb{R}^{n}$ with $\gamma((-1,0)) \subset E$, one has $\gamma((-1,1)) \subset E$. By a fundamental theorem [9, Thm. 1.4], the arc-symmetric semialgebraic sets are precisely
the closed sets of a certain noetherian topology on \mathbb{R}^{n}. (A topology is called noetherian when every descending sequence of its closed sets is stationary.) Following [9], we will call it the $\mathscr{A} \mathscr{R}$ topology, and the arc-symmetric semialgebraic sets will henceforth be called $\mathscr{A} \mathscr{R}$-closed sets.

Given an $\mathscr{A} \mathscr{R}$-closed set X in \mathbb{R}^{n}, we will denote by $\mathscr{A}_{a}(X)$ the ring of arcanalytic semialgebraic functions on X. By [9, Prop. 5.1], the zero locus of every $f \in \mathscr{A}_{a}(X)$ is $\mathscr{A} \mathscr{R}$-closed. Interestingly, despite noetherianity of the $\mathscr{A} \mathscr{R}$ topology, the ring $\mathscr{A}_{a}\left(\mathbb{R}^{n}\right)$ is not noetherian (see [9, Ex. 6.11]).

The usefulness of $\mathscr{A} \mathscr{R}$ topology comes from the fact that it contains and is strictly finer than the Zariski topology on \mathbb{R}^{n}. Moreover, it follows from the semialgebraic Curve Selection Lemma that $\mathscr{A} \mathscr{R}$-closed sets are closed in the Euclidean topology in \mathbb{R}^{n}.

Noetherianity of the $\mathscr{A} \mathscr{R}$ topology allows one to make sense of the notions of irreducibility and components of a semialgebraic set much like in the algebraic case: An $\mathscr{A} \mathscr{R}$-closed set X is called $\mathscr{A} \mathscr{R}$-irreducible if it cannot be written as a union of two proper $\mathscr{A} \mathscr{R}$-closed subsets. Every $\mathscr{A} \mathscr{R}$-closed set admits a unique decomposition $X=X_{1} \cup \cdots \cup X_{r}$ into $\mathscr{A} \mathscr{R}$-irreducible sets satisfying $X_{i} \not \subset \bigcup_{j \neq i} X_{j}$ for each $i=1, \ldots, r$. The sets X_{1}, \ldots, X_{r} are called the $\mathscr{A} \mathscr{R}$-components of X. The decomposition into $\mathscr{A} \mathscr{R}$-components is finer than that into algebraic or Nash components and encodes more algebro-differential information (see [11]). In particular, by a beautiful characterisation of Kurdyka, there is a one-to-one correspondence between the $\mathscr{A} \mathscr{R}$-components of X of maximal dimension and the connected components of a desingularization of the Zariski closure of X.

Desingularization arguments play a very important role in the study of arcsymmetry and arc-analyticity. Together with H. Seyedinejad [1], we used them recently to prove that every $\mathscr{A} \mathscr{R}$-closed set X in \mathbb{R}^{n} is precisely the zero locus of a certain arc-analytic function $f \in \mathscr{A}_{a}\left(\mathbb{R}^{n}\right)$. It thus follows that the $\mathscr{A} \mathscr{R}$ topology coincides with the one defined by the vanishing of semialgebraic arc-analytic functions, which is not at all apparent from the intrinsic definition above.

Extending the techniques of [1], most recently we also proved in [2] an arcanalytic analogue of Efroymson's extension theorem [5]: Every arc-analytic semialgebraic function $f: X \rightarrow \mathbb{R}$ on an $\mathscr{A} \mathscr{R}$-closed set $X \subset \mathbb{R}^{n}$ is, in fact, a restriction of an arc-analytic function $F \in \mathscr{A}_{a}\left(\mathbb{R}^{n}\right)$. Moreover, the function F may be chosen real analytic outside the Zariski closure of X. This result is particularly interesting in the context of the so-called continuous rational functions, which form one of the most active research areas in contemporary real algebraic geometry (see, e.g., [7] and the references therein). A continuous function f is called continuous rational if it is generically of the form $\frac{p}{q}$, with p and q polynomial. Continuous rational functions on an $\mathscr{A} \mathscr{R}$-closed set X form a subring of $\mathscr{A}_{a}(X)$, and the following example of Kollar-Nowak [8] shows that not every continuous rational function on an $\mathscr{A} \mathscr{R}$-closed set admits an extension to the ambient space as a continuous rational function. Nonetheless, by [2], it does admit an extension as an arc-analytic one.

Example 2. The function $f(x, y, z)=\sqrt[3]{1+z^{2}}$ is continuous rational on the real algebraic surface $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{3}=\left(1+z^{2}\right) y^{3}\right\}$, since $\left.f\right|_{S}$ coincides with $\left.\frac{x}{y}\right|_{S}$, but it has no continuous rational extension to \mathbb{R}^{3} (see [8, Ex. 2]). Note that f is Nash, and hence arc-analytic, on \mathbb{R}^{3}.

References

1. J. Adamus and H. Seyedinejad, A proof of Kurdyka's conjecture on arc-analytic functions, Math. Ann. 369 (2017), 387-395.
2. J. Adamus and H. Seyedinejad, Extensions of arc-analytic functions, electronic preprint, arXiv:1706.06431v1 (2017).
3. E. Bierstone and P. D. Milman, Arc-analytic functions, Invent. Math. 101 (1990), 411-424.
4. E. Bierstone, P. D. Milman and A. Parusiński, A function which is arc-analytic but not continuous, Proc. Amer. Math. Soc. 113 (1991), 419-424.
5. G. Efroymson, The extension theorem for Nash functions, in "Real algebraic geometry and quadratic forms" (Rennes, 1981), 343-357, Lecture Notes in Math., 959, Springer, Berlin-New York, 1982.
6. G. Fichou, J. Huisman, F. Mangolte, and J.-P. Monnier, Fonctions régulues, J. Reine Angew. Math. 718 (2016), 103-151.
7. J. Kollár, W. Kucharz, and K. Kurdyka, Curve-rational functions, Math. Ann. (2017), DOI 10.1007/s00208-016-1513-z.
8. J. Kollár and K. Nowak, Continuous rational functions on real and p-adic varieties, Math. Z. 279 (2015), 85-97.
9. K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445462.
10. K. Kurdyka and A. Parusiński, Arc-symmetric sets and arc-analytic mappings, in "Arc spaces and additive invariants in real algebraic and analytic geometry", 33-67, Panor. Synthèses 24, Soc. Math. France, Paris, 2007.
11. H. Seyedinejad, Decomposition of sets in real algebraic geometry, electronic preprint, arXiv:1704.08965v1 (2017).

Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7

E-mail address: jadamus@uwo.ca

