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In this note, we will mostly deal with semialgebraic geometry, that is, the study of
real solutions of systems of polynomial equations and inequalities. A semialgebraic
set E in Rn is a finite union of sets of the form

{x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gs(x) > 0} ,
where s ∈ N and f, g1, . . . , gs are polynomials in real variables x = (x1, . . . , xn). A
function f : E → R is called semialgebraic if its graph Γf is a semialgebraic subset
of Rn × R. Given an open semialgebraic U ⊂ Rn, a real analytic semialgebraic
function f : U → R is called Nash.

Our main object of interest here are the so called arc-analytic functions. A
function f : S → R on a set S ⊂ Rn is said to be arc-analytic when f ◦γ is analytic
for every real analytic arc γ : (−ε, ε)→ S.

Arc-analytic functions, although relatively unknown among non-specialists, play
an important role in modern real algebraic and analytic geometry (see, e.g., [10]
and the references therein). Indeed, Bierstone and Milman [3] proved that arc-
analytic semialgebraic functions on a Nash manifold are precisely those that can
be made Nash after composition with a finite sequence of blowings-up with smooth
algebraic nowhere dense centres. In fact, this criterion is often the quickest way to
determine arc-analyticity of a given function. Many classical examples in calculus
are arc-analytic but not analytic.

Example 1. (a) The function f : R2 → R defined as f(x, y) = x3/(x2 + y2) for
(x, y) 6= (0, 0) and f(0, 0) = 0 is arc-analytic but not differentiable at the origin.
Observe that f is made Nash after composition with a single blowing-up of the
origin; for instance, f(x, xy) = x/(1 + y2). Note also that the graph Γf of f is not
real analytic. In fact, the smallest real analytic subset of R3 containing Γf is the
Cartan umbrella {(x, y, z) ∈ R3 : z(x2 + y2) = x3} (cf. [9, Ex. 1.2(1)]).

(b) The function g : R2 → R defined as g(x, y) =
√
x4 + y4 is arc-analytic

but not C2. The graph Γg of g is not real analytic. Indeed, the Zariski closure

{(x, y, z) ∈ R3 : z2 = x4 + y4} of Γg has two C1 sheets z = ±
√
x4 + y4, but it is

irreducible at the origin as a real analytic set (cf. [3, Ex. 1.2(3)]).

In general, the behaviour of arc-analytic functions may be surprising, if not
pathological. For example, in [4] the authors construct an arc-analytic function
f : R2 → R which is not even continuous. However, in the semialgebraic setting,
arc-analytic functions form a very nice family.

Arc-analytic functions were first considered by Kurdyka [9] on arc-symmetric
semialgebraic sets. A set E in Rn is called arc-symmetric when, for every analytic
arc γ : (−1, 1) → Rn with γ((−1, 0)) ⊂ E, one has γ((−1, 1)) ⊂ E. By a funda-
mental theorem [9, Thm. 1.4], the arc-symmetric semialgebraic sets are precisely
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the closed sets of a certain noetherian topology on Rn. (A topology is called noe-
therian when every descending sequence of its closed sets is stationary.) Following
[9], we will call it the AR topology, and the arc-symmetric semialgebraic sets will
henceforth be called AR-closed sets.

Given an AR-closed set X in Rn, we will denote by Aa(X) the ring of arc-
analytic semialgebraic functions on X. By [9, Prop. 5.1], the zero locus of every
f ∈ Aa(X) is AR-closed. Interestingly, despite noetherianity of the AR topology,
the ring Aa(Rn) is not noetherian (see [9, Ex. 6.11]).

The usefulness of AR topology comes from the fact that it contains and is strictly
finer than the Zariski topology on Rn. Moreover, it follows from the semialgebraic
Curve Selection Lemma that AR-closed sets are closed in the Euclidean topology
in Rn.

Noetherianity of the AR topology allows one to make sense of the notions of
irreducibility and components of a semialgebraic set much like in the algebraic case:
An AR-closed set X is called AR-irreducible if it cannot be written as a union
of two proper AR-closed subsets. Every AR-closed set admits a unique decom-
position X = X1 ∪ · · · ∪Xr into AR-irreducible sets satisfying Xi 6⊂

⋃
j 6=iXj for

each i = 1, . . . , r. The sets X1, . . . , Xr are called the AR-components of X. The
decomposition into AR-components is finer than that into algebraic or Nash com-
ponents and encodes more algebro-differential information (see [11]). In particular,
by a beautiful characterisation of Kurdyka, there is a one-to-one correspondence
between the AR-components of X of maximal dimension and the connected com-
ponents of a desingularization of the Zariski closure of X.

Desingularization arguments play a very important role in the study of arc-
symmetry and arc-analyticity. Together with H. Seyedinejad [1], we used them
recently to prove that every AR-closed set X in Rn is precisely the zero locus of
a certain arc-analytic function f ∈ Aa(Rn). It thus follows that the AR topol-
ogy coincides with the one defined by the vanishing of semialgebraic arc-analytic
functions, which is not at all apparent from the intrinsic definition above.

Extending the techniques of [1], most recently we also proved in [2] an arc-
analytic analogue of Efroymson’s extension theorem [5]: Every arc-analytic semial-
gebraic function f : X → R on an AR-closed set X ⊂ Rn is, in fact, a restriction
of an arc-analytic function F ∈ Aa(Rn). Moreover, the function F may be chosen
real analytic outside the Zariski closure of X. This result is particularly interesting
in the context of the so-called continuous rational functions, which form one of the
most active research areas in contemporary real algebraic geometry (see, e.g., [7]
and the references therein). A continuous function f is called continuous rational
if it is generically of the form p

q , with p and q polynomial. Continuous rational

functions on an AR-closed set X form a subring of Aa(X), and the following ex-
ample of Kollar-Nowak [8] shows that not every continuous rational function on an
AR-closed set admits an extension to the ambient space as a continuous rational
function. Nonetheless, by [2], it does admit an extension as an arc-analytic one.

Example 2. The function f(x, y, z) = 3
√

1 + z2 is continuous rational on the real
algebraic surface S = {(x, y, z) ∈ R3 : x3 = (1 + z2)y3}, since f |S coincides with
x
y |S , but it has no continuous rational extension to R3 (see [8, Ex. 2]). Note that f

is Nash, and hence arc-analytic, on R3.
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10. K. Kurdyka and A. Parusiński, Arc-symmetric sets and arc-analytic mappings, in “Arc spaces

and additive invariants in real algebraic and analytic geometry”, 33–67, Panor. Synthèses 24,
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