ON ARC-ANALYTIC FUNCTIONS AND ARC-SYMMETRIC SETS

JANUSZ ADAMUS

In this note, we will mostly deal with semialgebraic geometry, that is, the study of real solutions of systems of polynomial equations and inequalities. A *semialgebraic* set E in \mathbb{R}^n is a finite union of sets of the form

$$\{x \in \mathbb{R}^n : f(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\},\$$

where $s \in \mathbb{N}$ and f, g_1, \ldots, g_s are polynomials in real variables $x = (x_1, \ldots, x_n)$. A function $f: E \to \mathbb{R}$ is called semialgebraic if its graph Γ_f is a semialgebraic subset of $\mathbb{R}^n \times \mathbb{R}$. Given an open semialgebraic $U \subset \mathbb{R}^n$, a real analytic semialgebraic function $f: U \to \mathbb{R}$ is called *Nash*.

Our main object of interest here are the so called *arc-analytic* functions. A function $f: S \to \mathbb{R}$ on a set $S \subset \mathbb{R}^n$ is said to be arc-analytic when $f \circ \gamma$ is analytic for every real analytic arc $\gamma: (-\varepsilon, \varepsilon) \to S$.

Arc-analytic functions, although relatively unknown among non-specialists, play an important role in modern real algebraic and analytic geometry (see, e.g., [10] and the references therein). Indeed, Bierstone and Milman [3] proved that arcanalytic semialgebraic functions on a Nash manifold are precisely those that can be made Nash after composition with a finite sequence of blowings-up with smooth algebraic nowhere dense centres. In fact, this criterion is often the quickest way to determine arc-analyticity of a given function. Many classical examples in calculus are arc-analytic but not analytic.

Example 1. (a) The function $f : \mathbb{R}^2 \to \mathbb{R}$ defined as $f(x, y) = x^3/(x^2 + y^2)$ for $(x, y) \neq (0, 0)$ and f(0, 0) = 0 is arc-analytic but not differentiable at the origin. Observe that f is made Nash after composition with a single blowing-up of the origin; for instance, $f(x, xy) = x/(1 + y^2)$. Note also that the graph Γ_f of f is not real analytic. In fact, the smallest real analytic subset of \mathbb{R}^3 containing Γ_f is the *Cartan umbrella* $\{(x, y, z) \in \mathbb{R}^3 : z(x^2 + y^2) = x^3\}$ (cf. [9, Ex. 1.2(1)]).

(b) The function $g : \mathbb{R}^2 \to \mathbb{R}$ defined as $g(x,y) = \sqrt{x^4 + y^4}$ is arc-analytic but not \mathcal{C}^2 . The graph Γ_g of g is not real analytic. Indeed, the Zariski closure $\{(x, y, z) \in \mathbb{R}^3 : z^2 = x^4 + y^4\}$ of Γ_g has two \mathcal{C}^1 sheets $z = \pm \sqrt{x^4 + y^4}$, but it is irreducible at the origin as a real analytic set (cf. [3, Ex. 1.2(3)]).

In general, the behaviour of arc-analytic functions may be surprising, if not pathological. For example, in [4] the authors construct an arc-analytic function $f : \mathbb{R}^2 \to \mathbb{R}$ which is not even continuous. However, in the semialgebraic setting, arc-analytic functions form a very nice family.

Arc-analytic functions were first considered by Kurdyka [9] on arc-symmetric semialgebraic sets. A set E in \mathbb{R}^n is called *arc-symmetric* when, for every analytic arc $\gamma : (-1,1) \to \mathbb{R}^n$ with $\gamma((-1,0)) \subset E$, one has $\gamma((-1,1)) \subset E$. By a fundamental theorem [9, Thm. 1.4], the arc-symmetric semialgebraic sets are precisely

JANUSZ ADAMUS

the closed sets of a certain noetherian topology on \mathbb{R}^n . (A topology is called *noe-therian* when every descending sequence of its closed sets is stationary.) Following [9], we will call it the \mathscr{AR} topology, and the arc-symmetric semialgebraic sets will henceforth be called \mathscr{AR} -closed sets.

Given an \mathscr{AR} -closed set X in \mathbb{R}^n , we will denote by $\mathscr{A}_a(X)$ the ring of arcanalytic semialgebraic functions on X. By [9, Prop. 5.1], the zero locus of every $f \in \mathscr{A}_a(X)$ is \mathscr{AR} -closed. Interestingly, despite noetherianity of the \mathscr{AR} topology, the ring $\mathscr{A}_a(\mathbb{R}^n)$ is not noetherian (see [9, Ex. 6.11]).

The usefulness of \mathscr{AR} topology comes from the fact that it contains and is strictly finer than the Zariski topology on \mathbb{R}^n . Moreover, it follows from the semialgebraic Curve Selection Lemma that \mathscr{AR} -closed sets are closed in the Euclidean topology in \mathbb{R}^n .

Noetherianity of the \mathscr{R} topology allows one to make sense of the notions of irreducibility and components of a semialgebraic set much like in the algebraic case: An \mathscr{AR} -closed set X is called \mathscr{AR} -irreducible if it cannot be written as a union of two proper \mathscr{AR} -closed subsets. Every \mathscr{AR} -closed set admits a unique decomposition $X = X_1 \cup \cdots \cup X_r$ into \mathscr{AR} -irreducible sets satisfying $X_i \not\subset \bigcup_{j \neq i} X_j$ for each $i = 1, \ldots, r$. The sets X_1, \ldots, X_r are called the \mathscr{AR} -components of X. The decomposition into \mathscr{AR} -components is finer than that into algebraic or Nash components and encodes more algebro-differential information (see [11]). In particular, by a beautiful characterisation of Kurdyka, there is a one-to-one correspondence between the \mathscr{AR} -components of X of maximal dimension and the connected components of a desingularization of the Zariski closure of X.

Desingularization arguments play a very important role in the study of arcsymmetry and arc-analyticity. Together with H. Seyedinejad [1], we used them recently to prove that every \mathscr{AR} -closed set X in \mathbb{R}^n is precisely the zero locus of a certain arc-analytic function $f \in \mathscr{A}_a(\mathbb{R}^n)$. It thus follows that the \mathscr{AR} topology coincides with the one defined by the vanishing of semialgebraic arc-analytic functions, which is not at all apparent from the intrinsic definition above.

Extending the techniques of [1], most recently we also proved in [2] an arcanalytic analogue of Efroymson's extension theorem [5]: Every arc-analytic semialgebraic function $f: X \to \mathbb{R}$ on an \mathscr{AR} -closed set $X \subset \mathbb{R}^n$ is, in fact, a restriction of an arc-analytic function $F \in \mathscr{A}_a(\mathbb{R}^n)$. Moreover, the function F may be chosen real analytic outside the Zariski closure of X. This result is particularly interesting in the context of the so-called continuous rational functions, which form one of the most active research areas in contemporary real algebraic geometry (see, e.g., [7] and the references therein). A continuous function f is called *continuous rational* if it is generically of the form $\frac{p}{q}$, with p and q polynomial. Continuous rational functions on an \mathscr{AR} -closed set X form a subring of $\mathscr{A}_a(X)$, and the following example of Kollar-Nowak [8] shows that not every continuous rational function on an \mathscr{AR} -closed set admits an extension to the ambient space as a continuous rational function. Nonetheless, by [2], it does admit an extension as an arc-analytic one.

Example 2. The function $f(x, y, z) = \sqrt[3]{1+z^2}$ is continuous rational on the real algebraic surface $S = \{(x, y, z) \in \mathbb{R}^3 : x^3 = (1+z^2)y^3\}$, since $f|_S$ coincides with $\frac{x}{y}|_S$, but it has no continuous rational extension to \mathbb{R}^3 (see [8, Ex. 2]). Note that f is Nash, and hence arc-analytic, on \mathbb{R}^3 .

References

- J. Adamus and H. Seyedinejad, A proof of Kurdyka's conjecture on arc-analytic functions, Math. Ann. 369 (2017), 387–395.
- J. Adamus and H. Seyedinejad, Extensions of arc-analytic functions, electronic preprint, arXiv:1706.06431v1 (2017).
- 3. E. Bierstone and P. D. Milman, Arc-analytic functions, Invent. Math. 101 (1990), 411-424.
- E. Bierstone, P. D. Milman and A. Parusiński, A function which is arc-analytic but not continuous, Proc. Amer. Math. Soc. 113 (1991), 419–424.
- G. Efroymson, The extension theorem for Nash functions, in "Real algebraic geometry and quadratic forms" (Rennes, 1981), 343–357, Lecture Notes in Math., 959, Springer, Berlin-New York, 1982.
- G. Fichou, J. Huisman, F. Mangolte, and J.-P. Monnier, *Fonctions régulues*, J. Reine Angew. Math. **718** (2016), 103–151.
- J. Kollár, W. Kucharz, and K. Kurdyka, Curve-rational functions, Math. Ann. (2017), DOI 10.1007/s00208-016-1513-z.
- J. Kollár and K. Nowak, Continuous rational functions on real and p-adic varieties, Math. Z. 279 (2015), 85–97.
- K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445– 462.
- K. Kurdyka and A. Parusiński, Arc-symmetric sets and arc-analytic mappings, in "Arc spaces and additive invariants in real algebraic and analytic geometry", 33–67, Panor. Synthèses 24, Soc. Math. France, Paris, 2007.
- 11. H. Seyedinejad, Decomposition of sets in real algebraic geometry, electronic preprint, arXiv:1704.08965v1 (2017).

Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A $5\mathrm{B7}$

E-mail address: jadamus@uwo.ca