
Factor Analysis
Rachael Smyth and Andrew Johnson

Introduction

For this lab, we are going to explore the factor analysis technique, looking at both principal axis and principal
components extraction methods, two different methods of identifying the correct number of factors to extract
(scree plot and parallel analysis), and two different methods of rotating factors to facilitate interpretation.

Load Libraries

The libraries we’ll need for this lab are psych and GPArotation.

library(psych)
library(GPArotation)

The Data

The dataset that we’ll use for this demonstration is called bfi and comes from the psych package. It is made
up of 25 self-report personality items from the International Personality Item Pool, gender, education level
and age for 2800 subjects and used in the Synthetic Aperture Personality Assessment.

The personality items are split into 5 categories: Agreeableness (A), Conscientiousness (C), Extraversion
(E), Neuroticism (N), Openness (O). Each item was answered on a six point scale: 1 Very Inaccurate, 2
Moderately Inaccurate, 3 Slightly Inaccurate, 4 Slightly Accurate, 5 Moderately Accurate, 6 Very Accurate.

data("bfi")

Describing the data

It’s a good idea to look at your data before you run any analysis. Any participant who is missing any piece
of data will be fully excluded from the analysis. It’s important to keep that in mind.

describe(bfi[1:25])

vars n mean sd median trimmed mad min max range skew kurtosis se
A1 1 2784 2.41 1.41 2 2.23 1.48 1 6 5 0.83 -0.31 0.03
A2 2 2773 4.80 1.17 5 4.98 1.48 1 6 5 -1.12 1.05 0.02
A3 3 2774 4.60 1.30 5 4.79 1.48 1 6 5 -1.00 0.44 0.02
A4 4 2781 4.70 1.48 5 4.93 1.48 1 6 5 -1.03 0.04 0.03
A5 5 2784 4.56 1.26 5 4.71 1.48 1 6 5 -0.85 0.16 0.02
C1 6 2779 4.50 1.24 5 4.64 1.48 1 6 5 -0.85 0.30 0.02
C2 7 2776 4.37 1.32 5 4.50 1.48 1 6 5 -0.74 -0.14 0.03
C3 8 2780 4.30 1.29 5 4.42 1.48 1 6 5 -0.69 -0.13 0.02
C4 9 2774 2.55 1.38 2 2.41 1.48 1 6 5 0.60 -0.62 0.03
C5 10 2784 3.30 1.63 3 3.25 1.48 1 6 5 0.07 -1.22 0.03

1

E1 11 2777 2.97 1.63 3 2.86 1.48 1 6 5 0.37 -1.09 0.03
E2 12 2784 3.14 1.61 3 3.06 1.48 1 6 5 0.22 -1.15 0.03
E3 13 2775 4.00 1.35 4 4.07 1.48 1 6 5 -0.47 -0.47 0.03
E4 14 2791 4.42 1.46 5 4.59 1.48 1 6 5 -0.82 -0.30 0.03
E5 15 2779 4.42 1.33 5 4.56 1.48 1 6 5 -0.78 -0.09 0.03
N1 16 2778 2.93 1.57 3 2.82 1.48 1 6 5 0.37 -1.01 0.03
N2 17 2779 3.51 1.53 4 3.51 1.48 1 6 5 -0.08 -1.05 0.03
N3 18 2789 3.22 1.60 3 3.16 1.48 1 6 5 0.15 -1.18 0.03
N4 19 2764 3.19 1.57 3 3.12 1.48 1 6 5 0.20 -1.09 0.03
N5 20 2771 2.97 1.62 3 2.85 1.48 1 6 5 0.37 -1.06 0.03
O1 21 2778 4.82 1.13 5 4.96 1.48 1 6 5 -0.90 0.43 0.02
O2 22 2800 2.71 1.57 2 2.56 1.48 1 6 5 0.59 -0.81 0.03
O3 23 2772 4.44 1.22 5 4.56 1.48 1 6 5 -0.77 0.30 0.02
O4 24 2786 4.89 1.22 5 5.10 1.48 1 6 5 -1.22 1.08 0.02
O5 25 2780 2.49 1.33 2 2.34 1.48 1 6 5 0.74 -0.24 0.03

This suggests that most items are only missing 20 or 30 participants worth of data - which is no big deal in a
data set with 2800 observations. It is possible, however, that some of these missing values are non-overlapping
- meaning that it could be a different 20 or 30 individuals missing from each of the variables. We can, however,
determine the number of “complete cases” within the data - these are individuals that are missing no data
whatsoever on the questionnaire.

sum(complete.cases(bfi[1:25]))

[1] 2436

The complete.cases function generates a Boolean vector, where a value of “TRUE” means that the case is
complete, and a value of “FALSE” means that the case is missing at least one value. Summing across this
vector gives us the total number of complete cases. This means that there are 2436 cases with no missing
data. This means that 13% of the data is missing. There is no magic number as to the amount of missing
data that is acceptable - but sample size is important for factor analysis. Some authors suggest that you
need at least 10 observations for each variable in the factor analysis - our sample size is, therefore, adequate
for our purposes.

Assessing the Factorability of the Data

Before we go too far down the road with this analysis, we should evaluate the “factorability” of our data. In
other words, “are there meaningful latent factors to be found within the data?” We can check two things: (1)
Bartlett’s test of sphericity; and (2) the Kaiser-Meyer-Olkin measure of sampling adequacy.

2

Bartlett’s Test of Sphericity

The most liberal test is Bartlett’s test of sphericity - this evaluates whether or not the variables intercorrelate
at all, by evaluating the observed correlation matrix against an “identity matrix” (a matrix with ones along
the principal diagonal, and zeroes everywhere else). If this test is not statistically significant, you should not
employ a factor analysis.

cortest.bartlett(bfi[1:25])

R was not square, finding R from data

$chisq
[1] 20163.79
##
$p.value
[1] 0
##
$df
[1] 300

Bartlett’s test was statistically significant, suggesting that the observed correlation matrix among the items is
not an identity matrix. This really isn’t a particularly powerful indication that you have a factorable dataset,
though - all it really tells you is that at least some of the variables are correlated with each other.

KMO

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is a better measure of factorability. The
KMO tests to see if the partial correlations within your data are close enough to zero to suggest that there is
at least one latent factor underlying your variables. The minimum acceptable value is 0.50, but most authors
recommend a value of at 0.60 before undertaking a factor analysis. The KMO function in the psych package
produces an overall Measure of Sampling Adequacy (MSA, as its labelled in the output), and an MSA for
each item. Theoretically, if your overall MSA is too low, you could look at the item MSA’s and drop items
that are too low. This should be done with caution, of course, as is the case with any atheoretical, empirical
method of item selection.

KMO(bfi[1:25])

Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = bfi[1:25])
Overall MSA = 0.85
MSA for each item =
A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3
0.74 0.84 0.87 0.87 0.90 0.83 0.79 0.85 0.82 0.86 0.83 0.88 0.89 0.87 0.89 0.78 0.78 0.86
N4 N5 O1 O2 O3 O4 O5
0.88 0.86 0.85 0.78 0.84 0.76 0.76

The overall KMO for our data is 0.85 which is excellent - this suggests that we can go ahead with our planned
factor analysis.

3

Determining the Number of Factors to Extract

The first decision that we will face in our factor analysis is the decision as to the number of factors that we
will need to extract, in order to achieve the most parsimonious (but still interpretatable) factor structure.
There are a number of methods that we could use, but the two most commonly employed methods are the
scree plot, and parallel analysis. The simplest technique is the scree plot.

Scree Plot

Eigenvalues are a measure of the amount of variance accounted for by a factor, and so they can be useful in
determining the number of factors that we need to extract. In a scree plot, we simply plot the eigenvalues for
all of our factors, and then look to see where they drop off sharply.
Let’s take a look at the scree plot for the bfi dataset:

scree(bfi[,1:25])

5 10 15 20 25

0
1

2
3

4
5

Scree plot

factor or component number

E
ig

en
 v

al
ue

s
of

 fa
ct

or
s

an
d

co
m

po
ne

nt
s

PC
FA

The scree plot technique involves drawing a straight line through the plotted eigenvalues, starting with the
largest one. The last point to fall on this line represents the last factor that you extract, with the idea being
that beyond this, the amount of additional variance explained is non-meaningful. In fact, the word “scree”
refers to the loose stone that lies around the base of the mountain. A “scree plot” is effectively looking to
help you differentiate between the points that represent “mountain”, and the points that represent “scree.”
Regardless of whether you are using a principal components or a principal axis factor extraction, however,
there is a very large first factor in this data. If we were to draw our straight line starting at this point, you
would probably conclude that there are only three factors in the dataset. If, however, you were to start your
line at the second point in the scree plot, you would probably conclude that there are five factors in the
dataset. The latter interpretation is probably closer to the truth, but if this were the only piece of evidence
brought to bear in our consideration of the number of factors to extract, we might want to look at both of
these factor solutions.

4

Parallel Analysis

A better method for evaluating the scree plot is within a parallel analysis. In addition to plotting the
eigenvalues from our factor analysis (whether it’s based on principal axis or principal components extraction),
a parallel analysis involves generating random correlation matrices and after factor analyzing them, comparing
the resulting eigenvalues to the eigenvalues of the observed data. The idea behind this method is that
observed eigenvalues that are higher than their corresponding random eigenvalues are more likely to be from
“meaningful factors” than observed eigenvalues that are below their corresponding random eigenvalue.

fa.parallel(bfi[1:25])

5 10 15 20 25

0
1

2
3

4
5

Parallel Analysis Scree Plots

Factor/Component Numberei
ge

nv
al

ue
s

of
 p

rin
ci

pa
l c

om
po

ne
nt

s
an

d
fa

ct
or

 a
na

ly
si

s

 PC Actual Data
 PC Simulated Data
 PC Resampled Data
 FA Actual Data
 FA Simulated Data
 FA Resampled Data

Parallel analysis suggests that the number of factors = 6 and the number of components = 6

When looking at the parallel analysis scree plots, there are two places to look depending on which type of
factor analysis you’re looking to run. The two blue lines show you the observed eigenvalues - they should
look identical to the scree plots drawn by the scree function. The red dotted lines show you the random
eigenvalues or the simulated data line. Each point on the blue line that lies above the corresponding simulated
data line is a factor or component to extract. In this analysis, you can see that 6 factors in the “Factor
Analysis” parallel analysis lie above the corresponding simulated data line and 6 components in the “Principal
Components” parallel analysis lie above the corresponding simulated data line.

In our case, however, the last factor/component lies very close to the line - for both principal components
extraction and principal axis extraction. Thus, we should probably compare the 6 factor and 5 factor solutions,
to see which one is most interpretable.

5

Conducting the Factor Analysis

We already have a good idea as to how many factors (5 or 6) that we should extract in our analysis of the bfi
data object. Now we need to decide whether we will use “common factor” analysis, or “principal components”
analysis. In a very broad sense, “common factor” analysis (or “principal axis factoring”) is used when we
want to identify the latent variables that are underlying a set of variables, while “principal components”
analysis is used to reduce a set of variables to a smaller set of factors (i.e., the “principal components” of the
data). In other words, common factor analysis is used when you want to evaluate a theoretical model with a
set of variables, and principal components analysis is used for data reduction.

Both of these approaches have merit in test construction, and so we will walk through each approach with
this data.

Principal Axis Factoring (Common Factor Analysis)

The fa function takes the following parameters when it is called:

• the variables to be used within the factor analysis (items 1-25 from the bfi object)
• the number of factors we want to extract (6)
• the type of factor analysis we want to use (“pa” is principal axis factoring)
• the number of iterations or attempts to use when identifying the “best”" solution (50 is the default, but

we have changed it to 100)
• the type of rotation we want to use (we’ll start with “oblimin”)

pa6.out <- fa(bfi[1:25],
nfactors = 6,
fm="pa",
max.iter = 100,
rotate = "oblimin")

6

A quick way to visualize your rotated factor solution, and determine whether it represents an “interpretable”
solution is to use the fa.diagram function.

fa.diagram(pa6.out)

Factor Analysis

N1
N2
N3
N5
N4
C2
C4
C3
C5
C1
E2
E1
E4
E5
A2
A3
A1
A5
A4
O3
O1
O5
E3
O4
O2

PA2

0.8
0.8
0.7
0.4
0.4

PA3
0.7

−0.6
0.6

−0.5
0.5

PA10.7
0.6

−0.5
−0.4

PA50.7
0.6

−0.6
0.5
0.4

PA4
0.7
0.6

−0.4
0.4
0.4 PA6

0.4

As you can see from this, the sixth factor has only one variable loading on it - the second item on the openness
to experience scale. Thus, this probably represents an overextraction. . . let’s take a look at the five factor
solution.

7

pa5.out <- fa(bfi[1:25],
nfactors = 5,
fm="pa",
max.iter = 100,
rotate = "oblimin")

fa.diagram(pa5.out)

Factor Analysis

N1
N2
N3
N5
N4
E2
E4
E1
E5
E3
C2
C4
C3
C5
C1
A3
A2
A5
A4
A1
O3
O5
O1
O2
O4

PA2

0.8
0.8
0.7
0.5
0.5

PA1

−0.7
0.6

−0.6
0.4
0.4

PA3

0.7
−0.6
0.6

−0.6
0.5

PA5
0.7
0.6
0.5
0.4

−0.4

PA4
0.6

−0.5
0.5

−0.5
0.4

0.3

The five-factor solution is more interpretable - in fact, it seems to replicate the expected factor structure
nicely.

Communalities

The communality for each variable is the percentage of variance that can be explained by the retained factors.
It’s best if the retained factors explain more of the variance in each variable.

pa5.out$communality

A1 A2 A3 A4 A5 C1 C2 C3 C4
0.1917679 0.4472702 0.5226804 0.2800492 0.4638037 0.3301446 0.4502136 0.3182264 0.4506858
C5 E1 E2 E3 E4 E5 N1 N2 N3
0.4272571 0.3479662 0.5432814 0.4389546 0.5313933 0.4026775 0.6517914 0.6000981 0.5471437
N4 N5 O1 O2 O3 O4 O5
0.4881259 0.3496557 0.3126709 0.2575010 0.4639493 0.2512316 0.3002371

As a point of interest, the primary difference between the way that common factor analysis and principal
component analysis are conducted, is that the correlation matrix on which the factor analysis is based has

8

ones along the principal diagonal in principal components analysis, and the communalities along the principal
diagonal in principal axis factor analysis.

Eigenvalues

The eigenvalues derived in the extracted factor solution are stored within e.values. These are the eigenvalues
that were plotted in the scree plots that we looked at near the beginning of this process.

pa5.out$e.values[1:5]

[1] 5.036903 2.744085 2.107632 1.831842 1.535686

If you want the eigenvalues from the rotated solution, you would ask for values.

pa5.out$values[1:5]

[1] 4.4928257 2.2485818 1.5051927 1.1878333 0.9343431

Percentage of Variance Accounted For

We can use the eigenvalues to calculate the percentage of variance accounted for by each of the factors. Given
that the maximum sum of the eigenvalues will always be equal to the total number of variables in the analysis,
we can calculate the percentage of variance accounted for by dividing each eigenvalue by the total number of
variables in the analysis. In our example this is 25.

100*pa5.out$e.values[1:5]/length(pa5.out$e.values)

[1] 20.147610 10.976342 8.430529 7.327366 6.142746

If you wanted the percentage of variance accounted for by the rotated solution, you would use the eigenvalues
stored in values rather than e.values.

100*pa5.out$values[1:5]/length(pa5.out$values)

[1] 17.971303 8.994327 6.020771 4.751333 3.737372

Rotated Solution

We’ve already peeked at the highest-loading items for each factor (using fa.diagram), but this only tells us
the largest loading for each item. Each item will, however, load on each of the factors to a greater or lesser
degree - and we will eventually want to look at the full factor loading matrix. The factor loading matrix
shows us the factor loadings for each variable, after they have been rotated to “simple structure.” Essentially,
we are taking advantage of the fact that there are a number of factor solutions that are equally acceptable to
the “optimal” solution that was found within our initial extraction (i.e., that are mathematically equivalent),
and rotating the factors so that they are more easily interpreted.

Because we have used an oblique factor rotation (“oblimin”), this is sometimes (e.g., in SPSS) called a pattern
matrix.

9

print(pa5.out$loadings, cutoff=0, digits=3)

##
Loadings:
PA2 PA1 PA3 PA5 PA4
A1 0.213 0.166 0.067 -0.414 -0.058
A2 -0.023 -0.002 0.077 0.640 0.032
A3 -0.029 0.116 0.025 0.660 0.031
A4 -0.057 0.065 0.193 0.433 -0.148
A5 -0.112 0.234 0.006 0.532 0.044
C1 0.069 -0.027 0.546 -0.023 0.148
C2 0.149 -0.085 0.666 0.081 0.039
C3 0.034 -0.061 0.567 0.092 -0.068
C4 0.174 0.002 -0.614 0.040 -0.048
C5 0.189 -0.142 -0.553 0.018 0.092
E1 -0.059 -0.557 0.106 -0.083 -0.102
E2 0.099 -0.676 -0.016 -0.048 -0.058
E3 0.083 0.418 -0.001 0.245 0.283
E4 0.013 0.591 0.024 0.287 -0.077
E5 0.152 0.421 0.272 0.052 0.206
N1 0.814 0.103 0.004 -0.111 -0.047
N2 0.777 0.040 0.011 -0.094 0.015
N3 0.707 -0.100 -0.035 0.079 0.023
N4 0.474 -0.386 -0.135 0.095 0.080
N5 0.486 -0.202 -0.004 0.207 -0.150
O1 0.018 0.103 0.073 0.015 0.508
O2 0.195 0.057 -0.078 0.163 -0.456
O3 0.031 0.152 0.017 0.083 0.609
O4 0.126 -0.323 -0.024 0.174 0.371
O5 0.132 0.098 -0.025 0.043 -0.542
##
PA2 PA1 PA3 PA5 PA4
SS loadings 2.499 1.964 1.913 1.804 1.511
Proportion Var 0.100 0.079 0.077 0.072 0.060
Cumulative Var 0.100 0.179 0.255 0.327 0.388

10

We can also look at the structure matrix - this is just the pattern matrix multiplied by the factor intercorrelation
matrix. The result is that these values represent the correlations between the variables and the factors -
which may be more intuitive to interpret.

print(pa5.out$Structure, cutoff=0, digits=3)

##
Loadings:
[,1] [,2] [,3] [,4] [,5]
A1 0.181 -0.010 -0.030 -0.365 -0.100
A2 -0.061 0.237 0.217 0.662 0.171
A3 -0.083 0.350 0.197 0.710 0.183
A4 -0.121 0.239 0.277 0.467 -0.016
A5 -0.183 0.441 0.197 0.622 0.188
C1 -0.028 0.100 0.551 0.105 0.244
C2 0.039 0.070 0.643 0.191 0.168
C3 -0.062 0.081 0.552 0.173 0.050
C4 0.287 -0.171 -0.647 -0.100 -0.162
C5 0.321 -0.288 -0.600 -0.131 -0.038
E1 0.044 -0.564 -0.047 -0.262 -0.190
E2 0.248 -0.726 -0.211 -0.289 -0.184
E3 -0.018 0.528 0.185 0.434 0.399
E4 -0.127 0.675 0.201 0.471 0.081
E5 0.007 0.502 0.390 0.280 0.337
N1 0.796 -0.114 -0.156 -0.116 -0.059
N2 0.770 -0.152 -0.141 -0.105 -0.003
N3 0.731 -0.229 -0.170 0.016 0.007
N4 0.577 -0.474 -0.278 -0.062 0.003
N5 0.524 -0.263 -0.128 0.092 -0.149
O1 -0.023 0.205 0.195 0.161 0.542
O2 0.196 -0.025 -0.157 0.070 -0.432
O3 -0.014 0.278 0.182 0.253 0.653
O4 0.189 -0.237 -0.015 0.129 0.345
O5 0.120 -0.012 -0.124 -0.039 -0.524
##
[,1] [,2] [,3] [,4] [,5]
SS loadings 2.821 2.956 2.554 2.577 1.902
Proportion Var 0.113 0.118 0.102 0.103 0.076
Cumulative Var 0.113 0.231 0.333 0.436 0.512

Principal Components Analysis

This is how you run a Principal Components Analysis in R. The command is not the same as running
Principal Axis Factoring. Many of the steps will be the same, but we’ll go through them for the Principal
Components Analysis as well.

pc6.out <- principal(bfi[1:25],
nfactors = 6,
rotate = "oblimin")

Again, we can take a quick look at the factor structure for this solution using fa.diagram.

11

fa.diagram(pc6.out)

Factor Analysis

N2
N1
N3
N5
N4
C2
C3
C4
C1
C5
E1
E2
E4
E5
A1
A2
A3
A4
A5
O1
O3
E3
O4
O5
O2

PC2

0.9
0.9
0.8
0.6
0.5

PC3
0.7
0.7

−0.7
0.7

−0.6

PC10.8
0.7

−0.6
−0.5

PC5−0.8
0.7
0.6
0.4
0.4

PC6
0.7
0.7
0.5
0.5 PC4

0.7
0.7

As you can see, the six factor solution results in a factor that has major loadings from only two items, and is
not easily interpreted. Let’s take a look at the five factor solution.

12

pc5.out <- principal(bfi[1:25],
nfactors = 5,
rotate = "oblimin")

fa.diagram(pc5.out)

Factor Analysis

N1
N2
N3
N5
N4
E2
E1
E4
E3
E5
C2
C3
C4
C1
C5
A2
A3
A1
A5
A4
O5
O3
O2
O1
O4

PC2

0.8
0.8
0.8
0.6
0.6

PC1

−0.7
−0.7
0.7
0.6
0.5

PC3

0.8
0.7

−0.7
0.7

−0.6

PC5
0.7
0.7

−0.6
0.5
0.5

PC4
−0.7
0.6

−0.6
0.6
0.5

As was the case with the principal axis / common factor solution, the five-factor principal components solution
is far more interpretable, aligning very nicely with the expected item-factor orientation.

Now that we have determined the number of factors to extract, we can look at all of the same information
that we pulled out of the common factor solution.

Communalities

Again, these are the percentage of variance that can be explained by the retained factors for each variable.

pc5.out$communality

A1 A2 A3 A4 A5 C1 C2 C3 C4
0.4600865 0.5738357 0.5948168 0.4079652 0.5351829 0.4720674 0.5761450 0.4720012 0.5439312
C5 E1 E2 E3 E4 E5 N1 N2 N3
0.5235458 0.4755423 0.6048763 0.5303698 0.6061815 0.5018843 0.6886723 0.6594993 0.6342482
N4 N5 O1 O2 O3 O4 O5
0.5719617 0.4803649 0.4404534 0.4285102 0.5534135 0.4408476 0.4797453

13

Eigenvalues and % of Variance Accounted For

This computes a vector of the eigenvalues for our five principal components:

pc5.out$values[1:5]

[1] 5.036903 2.744085 2.107632 1.831842 1.535686

and this uses those eigenvalues to compute the percentage of variance associated with each of these factors:

100*pc5.out$values[1:5]/length(pc5.out$values)

[1] 20.147610 10.976342 8.430529 7.327366 6.142746

Rotated Solution

This factor loading matrix shows us the variables that load on each of the factors we have extracted. . .

print(pc5.out$loadings, cutoff=0, digits=3)

##
Loadings:
PC2 PC1 PC3 PC5 PC4
A1 0.228 0.232 0.109 -0.638 -0.098
A2 0.023 0.093 0.093 0.710 0.023
A3 0.011 0.249 0.041 0.669 0.010
A4 -0.048 0.102 0.234 0.511 -0.209
A5 -0.095 0.361 0.016 0.538 0.013
C1 0.075 -0.012 0.660 -0.055 0.167
C2 0.161 -0.058 0.755 0.063 0.037
C3 0.034 -0.080 0.691 0.090 -0.089
C4 0.239 0.042 -0.668 0.017 -0.070
C5 0.267 -0.114 -0.611 0.024 0.106
E1 -0.030 -0.690 0.150 -0.037 -0.068
E2 0.178 -0.726 -0.004 -0.017 -0.016
E3 0.097 0.586 0.004 0.201 0.259
E4 -0.022 0.686 0.029 0.235 -0.133
E5 0.137 0.541 0.303 -0.007 0.187
N1 0.818 0.110 -0.002 -0.150 -0.059
N2 0.805 0.061 0.009 -0.129 0.007
N3 0.788 -0.041 -0.023 0.041 0.018
N4 0.590 -0.355 -0.124 0.098 0.101
N5 0.609 -0.181 0.024 0.223 -0.178
O1 0.045 0.222 0.086 -0.016 0.588
O2 0.241 0.068 -0.072 0.154 -0.595
O3 0.060 0.290 0.028 0.075 0.637
O4 0.221 -0.324 -0.015 0.268 0.491
O5 0.139 0.081 -0.011 -0.003 -0.681
##
PC2 PC1 PC3 PC5 PC4
SS loadings 3.075 2.827 2.525 2.224 2.089
Proportion Var 0.123 0.113 0.101 0.089 0.084
Cumulative Var 0.123 0.236 0.337 0.426 0.510

14

. . . and the structure matrix shows us the correlations between the variables and the factors.

print(pc5.out$Structure, cutoff=0, digits=3)

PC2 PC1 PC3 PC5 PC4
A1 0.212907 0.07575 0.02697 -0.5934 -0.12801
A2 -0.035745 0.26336 0.20916 0.7440 0.11149
A3 -0.060868 0.40052 0.18315 0.7285 0.10191
A4 -0.115128 0.24698 0.30633 0.5475 -0.12221
A5 -0.173505 0.49446 0.17643 0.6242 0.10010
C1 -0.005854 0.11251 0.66075 0.0457 0.23987
C2 0.070089 0.08830 0.73602 0.1510 0.12747
C3 -0.046938 0.06560 0.67206 0.1578 -0.00462
C4 0.317776 -0.12858 -0.69578 -0.0850 -0.14650
C5 0.358435 -0.25977 -0.65150 -0.0870 0.02358
E1 0.050010 -0.67013 0.00167 -0.1704 -0.11414
E2 0.281251 -0.75686 -0.17694 -0.1844 -0.08279
E3 0.003611 0.63889 0.16770 0.3479 0.32967
E4 -0.132009 0.73416 0.18593 0.3744 -0.04613
E5 0.022180 0.59806 0.41564 0.1630 0.26925
N1 0.810704 -0.04224 -0.11145 -0.1713 -0.06896
N2 0.801580 -0.07683 -0.09807 -0.1527 -0.00404
N3 0.794194 -0.14576 -0.12412 -0.0072 0.01024
N4 0.649684 -0.43258 -0.24507 -0.0138 0.06088
N5 0.621782 -0.22946 -0.08086 0.1403 -0.17290
O1 0.000476 0.28164 0.19364 0.0993 0.61646
O2 0.237348 0.00047 -0.13944 0.0893 -0.58401
O3 0.008558 0.35926 0.16591 0.2007 0.67314
O4 0.252913 -0.25743 -0.01250 0.2333 0.48573
O5 0.133315 -0.00152 -0.09460 -0.0601 -0.67603

Final Thoughts

Remember that factor analysis, despite being a mathematically intensive procedure, is highly subjective. You
have to make choices about:

• the type of extraction method to use (principal axis or principal components)
• the number of factors to extract
• the factor rotation method to use when looking for simple structure (and interpretability)
• the interpretation of the factors

Furthermore. . . the outcome of your factor analysis (and the resulting interpretation of the factors) will be
highly dependent upon the variables that you select for inclusion in the analysis. Factor analysis is an
excellent method for evaluating underlying latent constructs, but. . . at it’s core, it is simply a method of
parsing large correlation matrices. If you select several variables that are highly related, you should not be
surprised if they group together to form a factor!

15

	Introduction
	Load Libraries
	The Data
	Describing the data

	Assessing the Factorability of the Data
	Bartlett's Test of Sphericity
	KMO

	Determining the Number of Factors to Extract
	Scree Plot
	Parallel Analysis

	Conducting the Factor Analysis
	Principal Axis Factoring (Common Factor Analysis)
	Communalities
	Eigenvalues
	Percentage of Variance Accounted For
	Rotated Solution

	Principal Components Analysis
	Communalities
	Eigenvalues and % of Variance Accounted For
	Rotated Solution

	Final Thoughts

