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Load Libraries

We’ll need the psych package for the analyses in this demonstration.
library(psych)

When you go to use this package in your publications, you should reference the package, as this gives your
readers an idea as to the version of the package used, and also gives credit to the authors of the package.

You can get the citation for any package using the citation function. So. . . to get the citation information
for the psych package, we would do the following:
citation("psych")

##
## To cite the psych package in publications use:
##
## Revelle, W. (2017) psych: Procedures for Personality and Psychological
## Research, Northwestern University, Evanston, Illinois, USA,
## https://CRAN.R-project.org/package=psych Version = 1.7.5.
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## title = {psych: Procedures for Psychological, Psychometric, and Personality Research},
## author = {William Revelle},
## organization = { Northwestern University},
## address = { Evanston, Illinois},
## year = {2017},
## note = {R package version 1.7.5},
## url = {https://CRAN.R-project.org/package=psych},
## }

The Data

The dataset that we’ll use for this demonstration is called bfi and comes from the psych package. It is made
up of 25 self-report personality items from the International Personality Item Pool, gender, education level
and age for 2800 subjects and used in the Synthetic Aperture Personality Assessment.

The personality items are split into 5 categories: Agreeableness (A), Conscientiousness (C), Extraversion
(E), Neuroticism (N), Openness (O). Each item was answered on a six point scale: 1 Very Inaccurate, 2
Moderately Inaccurate, 3 Slightly Inaccurate, 4 Slightly Accurate, 5 Moderately Accurate, 6 Very Accurate.
data("bfi")
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Because the data file is embedded within R, you can query this information directly within the console, with
?bfi. You can also look at the variable names and the first six lines of data, using head(bfi).
head(bfi)

## A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 O1 O2 O3 O4 O5 gender
## 61617 2 4 3 4 4 2 3 3 4 4 3 3 3 4 4 3 4 2 2 3 3 6 3 4 3 1
## 61618 2 4 5 2 5 5 4 4 3 4 1 1 6 4 3 3 3 3 5 5 4 2 4 3 3 2
## 61620 5 4 5 4 4 4 5 4 2 5 2 4 4 4 5 4 5 4 2 3 4 2 5 5 2 2
## 61621 4 4 6 5 5 4 4 3 5 5 5 3 4 4 4 2 5 2 4 1 3 3 4 3 5 2
## 61622 2 3 3 4 5 4 4 5 3 2 2 2 5 4 5 2 3 4 4 3 3 3 4 3 3 1
## 61623 6 6 5 6 5 6 6 6 1 3 2 1 6 5 6 3 5 2 2 3 4 3 5 6 1 2
## education age
## 61617 NA 16
## 61618 NA 18
## 61620 NA 17
## 61621 NA 17
## 61622 NA 17
## 61623 3 21

Finally, let’s create a data object that just has the personality items in it, to facilitate some of our later
analyses. We’ll call it bfi.items.
bfi.items <- bfi[,1:25]

Item Difficulty

The simplest item analyses are often the best, and that’s the case with item difficulty. It is simply the
proportion of individuals that got the “correct” answer on a question, and so it is thought of as a method
of determining how “easy” an item is (i.e., “is the question answered correctly by a high proportion of
individuals?”) or how “difficult” an item is (i.e., “is the question answered correctly by a low proportion
of individuals?”). The ability of an item to discriminate among individuals within the sample is related to
this, because items that are too difficult, or too easy, are not particularly good at distinguishing amongst
individuals within your sample. Thus, item difficulty is an excellent property to compute for your set of
items. And the good news is that it’s quite easy to derive, in R. To start with, we will need to convert our
continuous Likert style items into dichotomous items (i.e., “1” or “0”). In the BFI data, we would recode
very inaccurate, moderately inaccurate, and slightly inaccurate to become inaccurate, while very accurate,
moderately accurate, and slightly inaccurate become accurate).
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Creating a Dichotomization Function

Dichotomizing variables may be an operation that you do fairly frequently, and so it may be worthwhile to
create a function for future use. In R Studio, if you wanted to save this function you could simply create a R
Script document from the drop-down file menu, under New File.

The function we’re using requires that you input the data object name, and the number of response categories
in each variable. For the BFI, there are 6 categories, and so we would use the function call dich(bfi,6).
dich <- function(variable,categories) {

midpoint <- categories / 2
even <- as.logical(ifelse((midpoint-trunc(midpoint))==0,

"TRUE","FALSE"))
midpoint <- ifelse(even==TRUE,midpoint,midpoint+.5)
if(even==FALSE) variable[variable==midpoint]<- NA
variable <- ifelse(variable<midpoint,0,1)}

If you feed this function a variable, it will dichotomize just that variable. If you feed it a data frame
with several variables, it will dichotomize all of the variables within that data frame. We just need the 25
personality items, and so we will use the bfi.items object, in place of the full bfi object.
bfi.dich <- data.frame(dich(bfi.items,6))

Calculating and Using Item Difficulty Scores

Because each of our variables are (now) scored “0” or “1”, an average of each variable will yield a proportion
of the number of individuals that were scored “1” on each variable. This value is the item difficulty, and we
want to calculate this value for each of the 25 items.
difficulty.bfi <- colMeans(bfi.dich, na.rm=TRUE)

We want items with a difficulty that falls between 0.2 and 0.8. The simplest way to do this is to use the
subset function, in a way that will give us the difficulties that fall outside this range.
subset(difficulty.bfi, (difficulty.bfi < .2 | difficulty.bfi > .8))

## A2 A3 A4 A5 C1 C2 C3 E3 E4
## 0.9376127 0.9055516 0.8763035 0.9119971 0.9157970 0.8829251 0.8805755 0.8407207 0.8559656
## E5 O1 O3 O4
## 0.8862900 0.9550036 0.9202742 0.9353912
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Scoring The Data

We’ll set up the scoring key by scale. There are five scales in our data:

• Agreeableness
• Conscientiousness
• Extraversion
• Neuroticism
• Openness

The first step is to set up a list object that indicates the items that go with each of our scales. We can
indicate negatively-keyed items with a negative sign.
bfi.keys.list <- list(agree=c(-1, 2, 3, 4, 5),

consc=c(6, 7, 8, -9, -10),
extra=c(-11, -12, 13, 14, 15),
neuro=c(16, 17, 18, 19, 20),
open=c(21, -22, 23, 24, -25))

Notice that we used the index within the bfi object, for each of the items. We could have used the variable
names (“A1”, “A2”, etc.) within this list object, and it would have been perfectly acceptable to the key
generating function - but it would have been problematic for our use of the alpha command later on.

We will now take this list object, and use the make.keys function to create the scoring key itself.
bfi.keys <- make.keys(bfi.items,bfi.keys.list,item.labels=colnames(bfi))

Finally, we can use this scoring key to calculate the scale scores for each of our 5 scales.

This is also where decisions about missing data are made - I have chosen to just average the non-missing
values. If we had wanted to impute missing values with mean substitution (a problematic, albeit common
choice), we would use impute = "mean" in place of impute = "none". Finally, another common (and also
problematic) practice is to use listwise deletion on the data, by only analyzing complete cases. To do this,
you would remove impute = "none" and replace it with missing = FALSE.

Because we have both positively and negatively keyed items within our scales, we need to tell the function
the minimum and maximum on the scale. This allows it to reverse key the negatively keyed items before
creating the scale scores (an item can be reversed by subtracting the observed value from the maximum scale
score - in this case, “6”).
bfi.scored <-scoreItems(bfi.keys, bfi.items, impute = "none",

min=1, max=6, digits=3)

The actual scale scores for each of our five personality variables are now available within the scores value of
the bfi.scored object.
head(bfi.scored$scores)

## agree consc extra neuro open
## [1,] 4.0 2.8 3.8 2.8 3.0
## [2,] 4.2 4.0 5.0 3.8 4.0
## [3,] 3.8 4.0 4.2 3.6 4.8
## [4,] 4.6 3.0 3.6 2.8 3.2
## [5,] 4.0 4.4 4.8 3.2 3.6
## [6,] 4.6 5.6 5.6 3.0 5.0
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Reliability Analyses

We can now use the alpha function to calculate the item statistics. Let’s start with the agreeableness scale.
output.alpha.agree <- alpha(bfi.items[,abs(bfi.keys.list$agree)],

check.keys=TRUE)
output.alpha.agree

##
## Reliability analysis
## Call: alpha(x = bfi.items[, abs(bfi.keys.list$agree)], check.keys = TRUE)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
## 0.7 0.71 0.68 0.33 2.5 0.009 4.7 0.9
##
## lower alpha upper 95% confidence boundaries
## 0.69 0.7 0.72
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## A1- 0.72 0.73 0.67 0.40 2.6 0.0087
## A2 0.62 0.63 0.58 0.29 1.7 0.0119
## A3 0.60 0.61 0.56 0.28 1.6 0.0124
## A4 0.69 0.69 0.65 0.36 2.3 0.0098
## A5 0.64 0.66 0.61 0.32 1.9 0.0111
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## A1- 2784 0.58 0.57 0.38 0.31 4.6 1.4
## A2 2773 0.73 0.75 0.67 0.56 4.8 1.2
## A3 2774 0.76 0.77 0.71 0.59 4.6 1.3
## A4 2781 0.65 0.63 0.47 0.39 4.7 1.5
## A5 2784 0.69 0.70 0.60 0.49 4.6 1.3
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## A1 0.33 0.29 0.14 0.12 0.08 0.03 0.01
## A2 0.02 0.05 0.05 0.20 0.37 0.31 0.01
## A3 0.03 0.06 0.07 0.20 0.36 0.27 0.01
## A4 0.05 0.08 0.07 0.16 0.24 0.41 0.01
## A5 0.02 0.07 0.09 0.22 0.35 0.25 0.01

We used the list object that we created to produce the scoring key, as this contained the indices associated
with each of the items in the bfi.items object. You’ll notice, however, that we applied an absolute value
function to the object prior to use - this is because the alpha function can’t cope with negative indices. Some
of our items were, however, negatively keyed - and this needs to be taken into account within our calculations
of alpha. Otherwise, these items will negatively contribute to overall alpha. Fortunately, the alpha function
has the facility to automatically reverse key any items that have a negative item-total correlation. If you
want to take advantage of this facility, you need to include the parameter check.keys = TRUE.
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Let’s go ahead and generate item analysis objects for the other four scales.
output.alpha.consc <- alpha(bfi[,abs(bfi.keys.list$consc)],

check.keys=TRUE)
output.alpha.extra <- alpha(bfi[,abs(bfi.keys.list$extra)],

check.keys=TRUE)
output.alpha.neuro <- alpha(bfi[,abs(bfi.keys.list$neuro)],

check.keys=TRUE)
output.alpha.open <- alpha(bfi[,abs(bfi.keys.list$open)],

check.keys=TRUE)

Manipulating the reliability objects

We saved our alpha calculations as objects, and so we can either have them generate a full set of reliability
information (by typing in the name of the object, as we did with the agreeableness reliability calculations), or
we can extract just the information that we want for a particular purpose.

Probably the most common bit of information that you’re going to want to extract from your data is
Cronbach’s alpha. Let’s just grab the alpha for each of our scales, and format it into a neat table that is
labeled with the item names.
scale.names <- c("Agreeableness", "Conscientiousness", "Extraversion",

"Neuroticism", "Openness to Experience")
bfi.alphas <- as.numeric(c(output.alpha.agree$total[2],

output.alpha.consc$total[2],
output.alpha.extra$total[2],
output.alpha.neuro$total[2],
output.alpha.open$total[2]))

bfi.alpha.table <- data.frame(Scale = scale.names, Std.Alpha = bfi.alphas)
bfi.alpha.table

## Scale Std.Alpha
## 1 Agreeableness 0.7130286
## 2 Conscientiousness 0.7300726
## 3 Extraversion 0.7617951
## 4 Neuroticism 0.8146747
## 5 Openness to Experience 0.6072684

We can also generate a confidence interval for each of these alphas, using the cronbach.alpha.CI function
in the cocron package.

Let’s look at the confidence interval for the agreeableness scale. The alpha for this scale is 0.713, we have
2800 observations in total, and there are 5 items on the scale. We can calculate a 95% confidence interval for
this scale, as follows:
library(cocron)
cronbach.alpha.CI(alpha = 0.713, n = 2800, items = 5, conf.level = .95)

## lower.bound upper.bound
## 0.6958426 0.7294721

This tells us that we can be 95% confident that the Cronbach’s alpha for this scale ranges from 0.70 to 0.73.
As you can imagine, this is useful information - particularly for those occasions when a reviewer has casted
aspersions on your sample size!
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Another specific piece of information that we might be interested in is the alpha-if-deleted for each of the
items. This gives us information as to how the alpha will change (up or down) when a particular item is
deleted. We can access this information from within the alpha.drop value in our reliability objects.
output.alpha.agree$alpha.drop

## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## A1- 0.7185174 0.7255091 0.6730278 0.3978723 2.643109 0.008725479
## A2 0.6171800 0.6255799 0.5794588 0.2946317 1.670797 0.011903883
## A3 0.6002596 0.6129447 0.5578155 0.2836176 1.583610 0.012439996
## A4 0.6858057 0.6935413 0.6498474 0.3613369 2.263083 0.009825119
## A5 0.6429530 0.6555302 0.6050623 0.3223798 1.903012 0.011147900

output.alpha.consc$alpha.drop

## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## C1 0.6940004 0.6964219 0.6400689 0.3644787 2.294045 0.009337288
## C2 0.6735715 0.6748686 0.6189270 0.3416374 2.075679 0.009890727
## C3 0.6887341 0.6939587 0.6443433 0.3617903 2.267533 0.009564203
## C4- 0.6538256 0.6629030 0.6028021 0.3295908 1.966505 0.010664033
## C5- 0.6897249 0.6902020 0.6283368 0.3577300 2.227910 0.009561821

output.alpha.extra$alpha.drop

## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## E1- 0.7256547 0.7254473 0.6731108 0.3977979 2.642289 0.008369560
## E2- 0.6901804 0.6930860 0.6341860 0.3608429 2.258242 0.009508847
## E3 0.7279142 0.7262478 0.6737381 0.3987619 2.652939 0.008240909
## E4 0.7018885 0.7032346 0.6464289 0.3720235 2.369665 0.009073215
## E5 0.7436327 0.7442029 0.6913944 0.4210742 2.909348 0.007823617

output.alpha.neuro$alpha.drop

## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## N1 0.7581379 0.7583430 0.7109569 0.4396265 3.138096 0.007473708
## N2 0.7632327 0.7633957 0.7158526 0.4464791 3.226466 0.007321954
## N3 0.7553428 0.7567103 0.7311738 0.4374379 3.110326 0.007662889
## N4 0.7953499 0.7968948 0.7688488 0.4951762 3.923557 0.006404928
## N5 0.8126022 0.8128355 0.7870014 0.5205500 4.342892 0.005853676

output.alpha.open$alpha.drop

## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## O1 0.5315935 0.5340608 0.4761929 0.2227279 1.146203 0.01427836
## O2- 0.5672275 0.5701068 0.5103454 0.2489897 1.326159 0.01334500
## O3 0.4973614 0.5005554 0.4417967 0.2003557 1.002224 0.01526630
## O4 0.6114811 0.6208252 0.5602676 0.2904412 1.637306 0.01190493
## O5- 0.5116576 0.5279603 0.4738055 0.2185158 1.118466 0.01503747
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Or we can ask for a reasonably comprehensive set of item statistics, by accessing the item.stats value in
our reliability objects. This value will generate a data frame that includes the following:

value description
n number of

complete cases
for the item

raw.r correlation of
each item with
the total score,
not corrected for
item overlap

std.r correlation of
each item with
the total score,
not corrected for
item overlap,
based on
standardized
items

r.cor correlation of
each item with
the total score,
corrected for
item overlap and
scale reliability

r.drop correlation of
each item with
the total score,
NOT including
this item

mean mean of the item
sd standard

deviation of the
item

Recall when we discussed item discrimination, in the context of item difficulty earlier? Those item-total
correlations (raw.r, std.r, r.cor, r.drop) are a direct estimate of item discrimination. Items that are
particularly good at discriminating between individuals at the extreme ends of the scale will have strong positive
correlations with the total score, and so this correlation is often cited as a measure of the “discriminatory
power” of an item.
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output.alpha.agree$item.stats

## n raw.r std.r r.cor r.drop mean sd
## A1- 2784 0.5806903 0.5664248 0.3763568 0.3084177 4.586566 1.407737
## A2 2773 0.7279845 0.7479919 0.6665475 0.5636152 4.802380 1.172020
## A3 2774 0.7603190 0.7673623 0.7092193 0.5870046 4.603821 1.301834
## A4 2781 0.6541864 0.6306788 0.4712401 0.3944441 4.699748 1.479633
## A5 2784 0.6865886 0.6991918 0.5956637 0.4885651 4.560345 1.258512

output.alpha.consc$item.stats

## n raw.r std.r r.cor r.drop mean sd
## C1 2779 0.6457479 0.6701768 0.5398979 0.4502417 4.502339 1.241347
## C2 2776 0.6964417 0.7097047 0.6027268 0.5045647 4.369957 1.318347
## C3 2780 0.6638749 0.6748292 0.5389117 0.4642048 4.303957 1.288552
## C4- 2774 0.7365348 0.7305518 0.6413275 0.5525467 4.446647 1.375118
## C5- 2784 0.7196827 0.6818557 0.5659503 0.4774692 3.703305 1.628542

output.alpha.extra$item.stats

## n raw.r std.r r.cor r.drop mean sd
## E1- 2777 0.7238448 0.7026890 0.5882184 0.5162729 4.025567 1.631505
## E2- 2784 0.7797002 0.7646597 0.6935939 0.6053688 3.858118 1.605210
## E3 2775 0.6829944 0.7010725 0.5826706 0.5045725 4.000721 1.352719
## E4 2791 0.7466939 0.7459107 0.6625091 0.5779940 4.422429 1.457517
## E5 2779 0.6432360 0.6636566 0.5229059 0.4542446 4.416337 1.334768

output.alpha.neuro$item.stats

## n raw.r std.r r.cor r.drop mean sd
## N1 2778 0.8000205 0.8025129 0.7647699 0.6672057 2.929086 1.570917
## N2 2779 0.7872842 0.7916618 0.7496171 0.6526162 3.507737 1.525944
## N3 2789 0.8080845 0.8059785 0.7425154 0.6748167 3.216565 1.602902
## N4 2764 0.7151742 0.7145498 0.5984984 0.5428001 3.185601 1.569685
## N5 2771 0.6806090 0.6743705 0.5317978 0.4864824 2.969686 1.618647

output.alpha.open$item.stats

## n raw.r std.r r.cor r.drop mean sd
## O1 2778 0.6151215 0.6496038 0.5156383 0.3906794 4.816055 1.129530
## O2- 2800 0.6540084 0.5990735 0.4298223 0.3321195 4.286786 1.565152
## O3 2772 0.6746804 0.6926499 0.5910625 0.4505342 4.438312 1.220901
## O4 2786 0.4978647 0.5193170 0.2902618 0.2179427 4.892319 1.221250
## O5- 2780 0.6703869 0.6577082 0.5236747 0.4162105 4.510432 1.327959

Final Thoughts

As you can see, R gives you tremendous flexibility in the way that you present results and outputs. You can
select only the output that you want, manipulate the way in which you present the findings, and even use
your results in subsequent analyses.
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