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Introduction

Most of the validity analyses that you will undertake are based on a simple correlation coefficient, but there
are two analyses that require a bit more analytic sophisticiation: (1) the construction of Bland-Altman
plots; and (2) the construction of a “confusion matrix” (used in the calculation of sensitivity, specificity, and
predictive value). We will discuss each of these methods in this demonstration.

Bland-Altman Plots

The Bland-Altman plot is sometimes called a Tukey Mean-Difference Plot, owing to the fact that the plot
was first described by John Tukey. It is intended to see if there is a marked difference between two measures,
in terms of their prediction of a common construct. The plot is quite straightforward to create - it’s simply a
plot of the average of the two measures (on the x-axis) versus the difference between the two measures (on
the y-axis).

Our baseline assumption when undertaking to use this graphical technique is that both measures are effective
in their assessment of the construct. In other words, we assume that each of the measures are “reasonably
valid.” Thus, by computing the mean between the two measures, we are coming up with our best estimate of
the “true score” for the construct. We can then consider the difference between scores on the two measures
to be an estimate of the “bias” that is represented by the different methods of measurement at all measured
levels of the construct.

Let’s take a look at some example data. In this experiment, we wanted to evaluate the usefulness of a Wii
balance board, in assessing the length of the centre of pressure pathway during quiet stance (eyes open, feet
apart). The gold standard for this assessment is a fixed-mount forceplate, that is embedded into concrete.
We want to see if there is a significant difference between these two measures, when they are used within a
sample of individuals with Parkinson’s disease.

FP <- c(46.66, 38.07, 78.48, 43.19, 91.35, 42.64, 42.41, 37.05,
63.38, 32.13, 62.30, 32.94, 102.02, 54.59, 62.98, 48.8,
63.07, 83.8, 65.37)

Wii <- c(46.50, 37.85, 88.09, 36.21, 95.32, 32.52, 47.70, 31.91,
66.67, 29.57, 76.39, 36.41, 105.50, 55.13, 56.41, 49.52,
72.84, 61.51, 72.34)

There is no built-in function for the creation of Bland-Altman plots, and so I have written one. This function
automates the creation of the plot, the labelling of the axes, and the creation of the reference lines. I have
also built in functionality for plotting a standardized plot (i.e., a plot of the z-scores, rather than the raw
scores). The function (“baplot.R”) is posted to the module website. You may load it into your R environment
by placing it in your working directory and typing:

source("baplot.R")

1



We can now create a Bland-Altman plot from our data.

baplot(Wii, FP,
main="Wii Balance Board versus AMTI Force Plate",
xlab="Average COP path length (cm)",
ylab="Diff in COP path length (cm)",
std=FALSE)
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We are looking for two things within this plot.

1) The extent to which there is a consistent over- or under-estimation of the construct, by either measure.
This would be demonstrated by a distribution with points that were predominantly above the mean
reference line.

2) The range of values that the difference between the measures takes on - sometimes called the “margin
of error”. This can be evaluated by looking at the separation between the two dotted lines. The best
way to identify whether or not the margin of error is acceptable is to consider the clinical / practical
applications of the measurement instrument - if the disparity between the two instruments is acceptable,
then the measures may be considered to be roughly equivalent.

For our example, we can see that the Wii Balance Board does not consistently over- or under-estimate the
centre of pressure pathway. Furthermore, the differences between the measures falls within a confidence
interval that extends approximately 16cm on either side of zero. In other words, the margin of error is
approximately 16cm. We would consider this to be an acceptable margin of error, and thus we can conclude
that the Wii Balance Board is an acceptable substitute measurement tool for a “professional-grade” force-plate.
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Constructing and Using a Confusion Matrix

The establishment of predictive validity requires a simple correlation coefficient when the criterion variable is
a continuous variable, but what about the case when we are evaluating the ability of a measure to replicate (or
approximate) a diagnosis? When the criterion variable is a dichotomous variable (as is the case when we are
predicting a diagnosis), we are better to use statistics that capture the ability of a measure to approximate this
classification. For this, we are better served with epidemiological statistics such as sensitivity and specificity.

Both of these indicators can be estimated by a very specific frequency table called a confusion matrix. In
a confusion matrix, we identify the number of individuals that are true positives (i.e., individuals that are
identified as “positive cases” by both the measure being validated, and by the gold standard), and individuals
that are true negatives (i.e., individuals that are identified as “negative cases” by both the measure being
validated and by the gold standard). All other cases are, by definition, false (be they false positives or false
negatives). We can use the confusion matrix to estimate sensitivity and specificity.

Although it would be a simple matter to construct a confusion matrix using the standard table function, the
confusionMatrix function within the caret package automates much of the drudgery within the sensitivity
and specificity calculations, and so it is worthwhile introducing here.

We will need the caret package for the confusionMatrix function, and the MASS package for the lda function
(used to fit the model that we are using for our classification function).

library(caret)
library(MASS)

We will be using the famous Anderson iris data (sometimes attributed to Fisher, as he used the data to
describe the use of statistics in taxonomy). This data presents the measurements, in centimeters, of the
variables sepal length and width, and petal length and width, for 50 flowers for each of 3 species of iris.
The species are iris setosa, iris versicolor, and iris virginica. We will use all four of the sepal and petal
characteristics, in an effort to re-capture the classification specified within the data.

fit <- lda(Species ~ ., data = iris)
predicted <- predict(fit)$class

Note that this syntax has Species predicted by “.”. in this context, the “.” means that the criterion variable
will be predicted by all other variables within the dataset. If we had viewed the fit object, we would have
seen the output from the linear discriminant analysis that we ran with the lda function. We don’t really
need the coefficients of the linear discriminants - just the classification results. In other words, we want to
look at the classifications that the model would make, on the basis of the four sepal and petal characteristics.

We can use the table function to cross-tabulate the predicted values with the actual values from the original
dataset.

irisCrossTabs <- table(predicted, iris$Species)
irisCrossTabs

##
## predicted setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 48 1
## virginica 0 2 49

This tells us that our model is excellent at predicting iris species - particularly with regards to the setosa
varietal.
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You’ll note that we are looking at a 3x3 matrix, rather than the typical 2x2 matrix used in confusion matrix
demonstrations. This is where the confusionMatrix shines - it computes sensitivity and specificity by
comparing each factor level to the remaining levels, thereby automating a few additional steps that you would
normally need to perform by hand.

confusionMatrix(irisCrossTabs)

## Confusion Matrix and Statistics
##
##
## predicted setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 48 1
## virginica 0 2 49
##
## Overall Statistics
##
## Accuracy : 0.98
## 95% CI : (0.9427, 0.9959)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.97
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9600 0.9800
## Specificity 1.0000 0.9900 0.9800
## Pos Pred Value 1.0000 0.9796 0.9608
## Neg Pred Value 1.0000 0.9802 0.9899
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3200 0.3267
## Detection Prevalence 0.3333 0.3267 0.3400
## Balanced Accuracy 1.0000 0.9750 0.9800

In addition to the standard epidemiological information that you could have calculated by hand (i.e., sensitivity,
specificity, positive predictive value, and negative predictive value), this function also provides us with a
confidence interval around the overall accuracy rate. Thus, we can say that we are 95% certain that we can
classify an iris into one of these three species using only their petal and sepal characteristics, with 94.27% to
99.59% accuracy.
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