
Disattenuating Correlations for Unreliability
Andrew Johnson

Load Libraries

We will need the psych library for this lab.

library(psych)

The Data

We will use the bfi dataset from the psych package for this demonstration. This dataset is made up of 25
self-report personality items from the International Personality Item Pool, gender, education level and age for
2800 subjects and used in the Synthetic Aperture Personality Assessment.

The personality items are split into 5 categories: Agreeableness (A), Conscientiousness (C), Extraversion
(E), Neuroticism (N), Openness (O). Each item was answered on a six point scale: 1 Very Inaccurate, 2
Moderately Inaccurate, 3 Slightly Inaccurate, 4 Slightly Accurate, 5 Moderately Accurate, 6 Very Accurate.

data("bfi")

The bfi data frame contains 3 additional variables besides the personality items (gender, education, and
age). Let’s create a data object that just has the personality items in it, to facilitate some of our later
analyses. We’ll call it bfi.items.

bfi.items <- bfi[,1:25]

Disattenuation of a Correlation Coefficient Due to Unreliability

When we calculate a correlation between two observed variables, we are really more interested in the correlation
between the latent variables that they assess. Thus, any errors in measurement (e.g., unreliability) will impact
on our ability to get a true sense of the relationship between these two variables. Specifically, the correlation
between two latent variables (or constructs) will be underestimated when either (or both) of the observed
variables being correlated, are less than perfectly reliable.

What this means is that we will need to determine the reliabilities for each of the variables - and to do this,
we need to create scoring keys for the data.

1

Scoring The Questionnaire Data

We’ll set up the scoring key by scale. There are five scales in our data:

• Agreeableness
• Conscientiousness
• Extraversion
• Neuroticism
• Openness

The first step is to set up a list object that indicates the items that go with each of our scales. We can
indicate negatively-keyed items with a negative sign.

bfi.keys.list <- list(agree=c("-A1", "A2", "A3", "A4", "A5"),
consc=c("C1", "C2", "C3", "-C4", "-C5"),
extra=c("-E1", "-E2", "E3", "E4", "E5"),
neuro=c("N1", "N2", "N3", "N4", "N5"),
open=c("O1", "-O2", "O3", "O4", "-O5"))

We will now take this list object, and use the make.keys function to create the scoring key itself.

bfi.keys <- make.keys(bfi.items,bfi.keys.list,item.labels=colnames(bfi.items))

Finally, we can use this scoring key to calculate the scale scores for each of our 5 scales.

This is also where decisions about missing data are made - I have chosen to just average the non-missing
values. If we had wanted to impute missing values with mean substitution (a problematic, albeit common
choice), we would use impute = "mean" in place of impute = "none". Finally, another common (and also
problematic) practice is to use listwise deletion on the data, by only analyzing complete cases. To do this,
you would remove impute = "none" and replace it with missing = FALSE.

Because we have both positively and negatively keyed items within our scales, we need to tell the function
the minimum and maximum on the scale. This allows it to reverse key the negatively keyed items before
creating the scale scores (an item can be reversed by subtracting the observed value from the maximum scale
score - in this case, “6”).

bfi.scored <-scoreItems(bfi.keys, bfi.items, impute = "none",
min=1, max=6, digits=3)

The actual scale scores for each of our five personality variables are now available within the scores value of
the bfi.scored object.

head(bfi.scored$scores)

agree consc extra neuro open
[1,] 4.0 2.8 3.8 2.8 3.0
[2,] 4.2 4.0 5.0 3.8 4.0
[3,] 3.8 4.0 4.2 3.6 4.8
[4,] 4.6 3.0 3.6 2.8 3.2
[5,] 4.0 4.4 4.8 3.2 3.6
[6,] 4.6 5.6 5.6 3.0 5.0

2

Reliability of the Five Scale Scores

The scoreItems function allows us to quickly and easily calculate Cronbach’s alpha for each scale.

bfi.scored$alpha

agree consc extra neuro open
alpha 0.7030184 0.726735 0.7617328 0.8139629 0.6001725

Generating a Disattenuated Correlation Matrix

The scoreItems function also allows us to leverage the reliabilities calculated within the function to
disattenuate the correlations among all possible combinations of the variables. The corrected value within
the bfi.scored object that we generated using the scoreItems function presents:

• the correlations of all scales (below the diagonal)
• Cronbach’s alpha for each scale (on the diagonal)
• the disattenuated correlations for each correlaton (above the diagonal)

bfi.scored$corrected

agree consc extra neuro open
agree 0.7030184 0.3612032 0.6324390 -0.24511039 0.2290928
consc 0.2581802 0.7267350 0.3527045 -0.30484444 0.2956128
extra 0.4628106 0.2624221 0.7617328 -0.28389768 0.3195135
neuro -0.1854161 -0.2344599 -0.2235453 0.81396295 -0.1233877
open 0.1488103 0.1952313 0.2160373 -0.08624068 0.6001725

Final Thoughts

Although it is tempting to view these disattenuated correlation coefficients as being the “best” estimate of
the correlation between two constructs, it is important to remember three things:

1) Disattenuation of a correlation does absolutely nothing to the measurement quality of a questionnaire
or measure.

2) Disattenuation of a correlation to remove measurement error does absolutely nothing about measures
that are measuring a construct inaccurately (i.e., it does not correct for low validity).

3) Disattenuation of a correlation to remove measurement error using the methods presented in this
example provides an estimate of what the correlation between two constructs would be if there was zero
measurement error. In practice, this is entirely impossible (i.e., every measure contains some error).

3

	Load Libraries
	The Data
	Disattenuation of a Correlation Coefficient Due to Unreliability
	Scoring The Questionnaire Data
	Reliability of the Five Scale Scores

	Generating a Disattenuated Correlation Matrix
	Final Thoughts

