Age Children with Diverse Impairments

Laura Pauls, Lisa Archibald (larchiba@uwo.ca) Western University, Canada

Introduction

Language Impairment & Narratives

- Children with language impairment (LI) tend to perform below peers on narratives on measures of productivity (Scott & Windsor, 2000), fluency (Guo et al., 2008; Miranda et al., 1998), and grammaticality (Duinmeijer et al., 2012; Vandewalle et al., 2012)
- Therefore, performance on narrative retell is commonly exclusively attributed to linguistic skill.

Methods

Narrative Language Sample

- Lost in Space (Warr-Leeper, 1990)
- Participants recalled the story after hearing it told to them

Participants

	LI	WMI	Controls
n	12 (9 males)	9 (5 males)	9 (6 males)
Age (yrs)	10.36 (1.12)	10.07 (1.26)	9.9 (1.05)
CLS	77.42 (2.78)	88.13 (11.48)	
WM	92.94 (12.49)	81.99 (6.42)	
PIQ	101.92 (12.46)	102.89 (7.98)	

WM: average of Odd One Out, Spatial Recall, and Counting *Recall* from AWMA.

NB: 4 participants met criteria for both LI and WMI.

Qualitative Procedure

- Descriptors were generated from linguistic features of narratives.
- Descriptors were developed through repetitive readings of narratives and comparison across participants.
- Samples from impairment groups were compared those from controls, examining for patterns of descriptors.

References

Exploring the Linguistic and Cognitive Processes Supporting Narrative Retell in School

Working	
Morkir	

Memory & Narratives

• Working memory may be involved in narrative retell:

- Encoding, integrating and recalling story events (Botting, 2002; Montgomery et al., 2009)
 - Supporting language formulation (Martin & Slevc, 2014)
- Impact on language may be greater for those with WM **deficits** (Hartsuiker & Barkhuysen, 2006; Kemper et al., 2009)

Coding

Quanti	tative Sco	ring
Productivit	ty	
	C-units	Тс
	NUW	Ν
	Events	Ν
Fluency		

Pauses %Maze **Grammatical Complexity** MLUw SubC-unit **Grammatical Accuracy** %GCU Errors

Total no. C-units No. unmazed words No. recalled events

No. pauses ≥ 2s per 100 NUW Ratio of mazed words* to NUW

Unmazed words per C-unit Finite subordinate clauses per C-unit

Percent grammatically correct C-units Morphosyntactic errors per C-unit

*Mazes: revisions, repetitions, fillers (e.g., "and stuff"), and hesitations (e.g., uh, um)

Model Testing

- Logistic regression in R⁺ to predict LI status from MLUw, %GCU, Pauses, % Maze and WMI status from Events, SubC-units, Pauses, % Mazes.
- Used backward elimination to select predictors. Age added last. Fit of iterative models compared using AIC, McFadden's psuedo-R² and ANOVA.

⁺Harrell, 2016; Heinze & Ploner, 2016; Jackman, 2015; R Core Team, 2016

Qualitative Descriptors

Fluency	Disfluencies, Hesitations, Effortful Recall, False Starts, Revisions, Blundering, Filler Phrases, Trailing Off
Content	Elaborate, Short, Missing Content, Repeated Content, Mixed Up Content, Added Content
Semantics	Expressive Vocabulary, Pauses, Odd Wording
Morphosyntax	Long Sentence, Short Sentences, Morphological Errors, Clumsy Links
Phonology	Low Attention to Phonological Detail

Conclusions

- LI was predicted by linguistic factors whereas WMI was predicted by **recall factors**.
- Grammatical complexity: LI was related to MLUw (and errors) whereas WMI was related to subordination.
- **Conceptual connections** between events may support recall.
- Qualitative descriptors of narratives differentiated children with and without impairment.
- The relationship between **mazing** and impairment may be mediated by other factors such as **monitoring ability** or willingness to **take risks** while speaking.

Trade-off Effects

- Improvements in one area associated with decline in another area, such as:
- Sentence complexity/length and verb accuracy (Grela & Leonard, 2000; Owen, 2010; Thordardottir, 2008)
- Sentence length and fluency (Costanza-Smith, 2004; MacLachlan & Chapman, 1988; Rispoli & Hadley, 2001; Wagner et al., 2000)

Analysis & Results

The authors have no financial or non-financial relationships relative to the content of this poster that compromise or have the potential to compromise professional judgment. Poster presented at SRCLD, 2017

sample predict impairment?

Events