Geophysics 9701B:
WAVEFORM TOMOGRAPHY - An introduction to theory and practice

Lecturer: Dr. R. Gerhard Pratt

Monday: 12:30 pm – 2:30 pm (lecture)
Wed: 9:30 am – 11:30 pm (lab)
Location: BGS 0179

Course Description

Geophysical imaging with seismic waveform data may be characterized as an inverse problem, in which we formally invert the forward relationship between the subsurface elastic parameters and the data from a controlled source seismic survey. Sometimes known as “Full Waveform Inversion”, or FWI, this approach has been used successfully to yield high resolution, quantitative images of the subsurface in a range of applied geophysical applications, including deep crustal seismic imaging in subduction zones, geophysical exploration for oil and gas, the mapping of mineral deposits, and the monitoring of embankment structures in geotechnical engineering.

This course covers all aspects of waveform tomography, from theoretical developments, software implementation, data conditioning, to application. Students in the course are given full access to existing FWI software and use the software to form images, initially using simple examples designed to demonstrate key scientific concepts and culminating in a practical mini-project using example data from a large scale example.

Pre-requisites

Students taking this course must be familiar with upper year mathematical physics methods, including linear algebra, partial differential equations, numerical methods, Fourier Transform methods. A course in Inverse Methods is highly desirable. Some numerical computing experience using a language such as Matlab, C, and/or Fortran is also highly desirable. Students must be prepared to install the course software on their own personal Linux computing environment, using standard installation procedures. A full installation of the free software package “Seismic Unix” is also required.

Because of these pre-requisites special permission from the instructor is required to enroll in the course. Unless you have written special permission from the instructor to enroll, you may be removed from this course and it will be deleted from your record. This decision may not be appealed. You will receive no adjustment to your fees in the event that you are dropped from a course for failing to have the necessary prerequisites.

Course resources

Students taking the course will be provided with a 180 page course text (PDF format) written by the instructor, as well as software and data for the class computer exercises.
The course text provides a number of references to the research literature and students are expected to read widely in the subject.

Course schedule for 2016

Note on homework exercises: These will be distributed during each week’s lab, and are due before the following week’s lecture. Solutions will be discussed during the following lab.

Week 1 (Feb 1st)
Lecture – Introduction to tomography with examples, ray theory

Week 2 (Feb 8th)
Due: **Exercise 1** - Section 2.5 exercises (1, 2, 3)
Lecture – Scattering theory, matrix inversion schemes
Lab – Software installation, discussion of solutions to Section 2.5 (1, 2, 3)

Week 3 (Feb 15th)
Due: **Exercise 2** - Section 2.5 exercises (4, 5)
Lecture: Frequency domain finite differences

Week 4 (Feb 22nd)
Due: **Exercise 3** - Section 3.5 exercises (Question 1 only, without parts a)-g)
Lecture – Implications of frequency domain modelling
Lab – Computer exercise: Frequency domain modelling
 – Discussion of homework solutions

Week 5 (Feb 29th)
Due: **Exercise 4** - Section 3.5 exercises (remaining questions)
Lecture – Introduction to inverse methods, Newton and Gradient methods
 – Computer exercises: Initial inversion examples
Lab – lecture on fast calculation of gradient
 – Discussion of homework solutions

Week 6 (March 7th)
Due: **Exercise 5** - Section 4.5 exercises (1, 2, 3)
Lecture – Gradient and data preconditioning, initial inversion examples (con’t)
Lab – discussion of homework solutions
 – initial inversion examples (con’t)

Week 7 (March 14th)
Due: **Exercise 6** - Section 4.5 exercises (4, 5)
Lecture – spare
Lab – inverting frequency domain data for the source wavelet
 - discussion of homework solutions
 - source signature inversion
 - how to choose parameters for frequency domain inversion
 - Computer exercise: Inverting for 2D velocity and attenuation models
Week 8 (March 21st)
 Due: Exercise 7 - Section 5.6, exercise (1, 2)
 Lecture – Problems of non-linearity
 Lab – further discussion of non-linearity, N_lambda, phase wrapping
 – discussion of homework solutions

Week 9 (March 28th)
 Due: Exercise 8 - Section 5.6 (questions 3, 4), Section 6.6 (question 1, but with
 the Einstein model).
 Lecture – discussion of homework solutions
 – case studies lecture
 Lab – further case studies lecture

Week 10 (April 4th)
 Due: Exercise 9 – Section 6.6 (questions 1-4)
 Lecture & Lab – further case studies, discussion of homework

Week 11 (April 11th)
 Due: Exercise 10 – Section 6.6 (question 5), plus initial CCSS processing (up to
 first source inversion 02.50_SrcExtract)
 Lecture – Introduction to CCSS case study data
 - Initial work on CCSS case study data
 Lecture/Lab – discussion and work on CCSS case study data

Week 12 (April 18th)
 Due: Exercise 11 - Final processing of CCSS case study data (to 4 Hz)
 Lecture/Lab – discussion and work on CCSS case study data

Week 13 (April 25th)
 Due: Project - Either: Section 7.4 (choose two questions to examine in detail).
 Or: separate processing of a dataset of your choice
Course evaluation

50% Weekly exercises (There are 11 - Sections 2.5, 3.5, 4.5, 5.6, 6.6, Initial and final processing CCSS case study)

20% Participation

30% Final project (either a full report on the CCSS dataset including at least two questions from section 7.4, or a full report on processing a dataset of your choice)

Student’s responsibilities in the event of a medical issue: If you are unable to meet a course requirement due to illness or other serious circumstances, you must provide valid medical or other supporting documentation to the Dean's office as soon as possible and contact your instructor immediately. It is the student's responsibility to make alternative arrangements with their instructor once the accommodation has been approved and the instructor has been informed. In the event of a missed final exam, a "Recommendation of Special Examination" form must be obtained from the Dean's Office immediately. For further information please see:

A student requiring academic accommodation due to illness, should use the Student Medical Certificate when visiting an off-campus medical facility or request a Records Release Form (located in the Dean's Office) for visits to Student Health Services. The form can be found here:
https://studentservices.uwo.ca/secure/medical_document.pdf

Statement on Academic Offenses:
Academic offenses are taken seriously. Students are directed to read the appropriate policy on academic offenses at:
www.uwo.ca/univsec/handbook/appeals/scholoff.pdf

Students must write their essays and assignments in their own words. Proper referencing or quotations must be used when taking an idea or passage from another author.

Accessibility Statement

Please contact the course instructor if you require material in an alternate format or if you require any other arrangements to make this course more accessible to you. You may also wish to contact Services for Students with Disabilities (SSD) at 661-2111 x.82147 for any specific question regarding an accommodation.

Health and Wellness

As part of a successful graduate student experience at Western, we encourage students to make their health and wellness a priority. Western provides several on campus health-related services to help you achieve optimum health and engage in healthy living while pursuing your graduate degree. For example, to support physical
activity, all students, as part of their registration, receive membership in Western's Campus Recreation Centre. Numerous cultural events are offered throughout the year. For example, please check out the Faculty of Music web page http://www.music.uwo.ca/, and our own McIntosh Gallery http://www.mcintoshgallery.ca/. Information regarding health- and wellness-related services available to students may be found at http://www.health.uwo.ca/. Students seeking help regarding mental health concerns are advised to speak to someone they feel comfortable confiding in, such as their faculty supervisor, their program director (graduate chair), or other relevant administrators in their unit. Campus mental health resources may be found at; http://www.health.uwo.ca/mental_health/resources.html