Course Instructor: Prof. Robert Shcherbakov (office: B&GS 1080; e-mail: rshcherb [at] uwo.ca)
Lectures: Tuesday: 9:30 a.m. – 11:30 a.m.; Thursday: 10:30 a.m. – 11:30 a.m. BGS 1084
Lectures start on January 9, 2018.
Office Hours: by appointment
Course TA’s: N/A

Course Description:
This course provides an advanced overview of fundamental processes responsible for the evolution and the current dynamic state of the Earth and other planets. It introduces concepts and topics of physics of the Earth providing a way to study the inner workings of our planet at different temporal and spatial scales. During the course students will be given an introduction into several fundamental physical concepts such as magnetism, radioactivity, elasticity, and elements of continuum mechanics and fluid mechanics which play key roles in understanding and studying various phenomena on Earth and planets.

Prerequisites: Permission of the instructor. (Unless you have either the requisites for this course or written special permission from your Dean to enroll in it, you will be removed from this course and it will be deleted from your record. This decision may not be appealed. You will receive no adjustment to your fees in the event that you are dropped from a course for failing to have the necessary prerequisites.)

Course Objectives and Learning Outcomes:
Upon successful completion of this course, students will be able to:
• apply basic knowledge and methods of the three major areas of geophysics: geomagnetism; radioactivity and radioactive dating methods; and elements of continuum mechanics applied to Earth processes;
• explain the basic principles of the physics of magnetism and their application to the Earth and planets;
• identify and use several radioactive dating schemes.
• apply the basic principles of continuum mechanics to modelling the deformation of solid materials and fluid flow.

Summary of Lecture Topics (approximate and subject to change!):
• Radioactivity and Earth’s age.
• Magnetism of the Earth and planets.
• The physics of magnetism.
• Rock magnetism, paleomagnetism, and the geomagnetic timescale.
• Magnetism of stars and planets.
• Geochronology and the geological timescale.
• Elasticity and flexure of plates.
• Deformation, stress, strain, and linear elasticity.
• Elements of continuum mechanics and rheology.
• Elastic properties of the Earth’s lithosphere.
• Principles of isostasy.
• Basics of fluid flow and fluid mechanics.
• Poroelasticity

Recommended Textbooks:

Course Work
Assignments will consist of examination-style answer questions, and require no formal writeup. Late submissions will be accepted with a 5% per day penalty. Under exceptional circumstances, late submissions will be accepted with no penalty, provided that adequate documentation is given. With a few exceptions, only SI units should be used to report any physical quantities.

The project will involve a written report and a brief oral presentation (10-15 minutes). The topic will be chosen by the student and approved by the instructor. Research topics must be in any area of the physics of the Earth covered during the course. The project must include references to the scientific literature. Projects are due April 11, and oral presentations will be given during the last week of the term. *(Plagiarism: Students must write their essays and assignments in their own words. Whenever students take an idea, or a passage from another author, they must acknowledge their debt both by using quotation marks where appropriate and by proper referencing such as footnotes or citations. Plagiarism is a major academic offence (see Scholastic Offence Policy in the Western Academic Calendar).)*

The midterm exam will be held during the class period on Tuesday, February 27. The final exam will be two hours in length and will take place during the April examination period. For both exams, a single-sided hand-written crib sheet and a non-programmable calculator may be used.

Method of Evaluation

<table>
<thead>
<tr>
<th>Assignments</th>
<th>Project</th>
<th>Midterm Exam</th>
<th>Final Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>35%</td>
<td>20%</td>
<td>20%</td>
</tr>
</tbody>
</table>
Statement on Academic Offences: "Scholastic offences are taken seriously and students are directed to read the appropriate policy, specifically, the definition of what constitutes a Scholastic Offence, at the following Web site:

Statements on special circumstances:
If you are unable to meet a course requirement due to illness or other serious circumstances, you must provide valid medical or other supporting documentation to the Dean's office as soon as possible and contact your instructor immediately. It is the student's responsibility to make alternative arrangements with their instructor once the accommodation has been approved and the instructor has been informed. In the event of a missed final exam, a "Recommendation of Special Examination" form must be obtained from the Dean's Office immediately. For further information please see:

A student requiring academic accommodation due to illness, should use the Student Medical Certificate when visiting an off-campus medical facility or request a Records Release Form (located in the Dean's Office) for visits to Student Health Services. The form can be found here: https://studentservices.uwo.ca/secure/medical_document.pdf