WESTERN UNIVERSITY
DEPARTMENT OF CHEMISTRY

CHEM 9484B-Electrostatics of Chemical and Biochemical Systems
January-April 2017

COURSE OUTLINE

Instructor Dr. Styliani Constas, Room 071-Chemistry Building, ext. 86338

E-mail styliani.constas@gmail.com

Lecture times Two hours per week.

Office hours Any time by appointment

Course website http://owl.uwo.ca/portal

Accessibility

Please contact the course instructor if you require material in an alternate format or if you require any other arrangements to make this course more accessible to you. You may also wish to contact Services for Students with Disabilities (SSD) at 661-2111 x 82147 for any specific question regarding an accommodation.

Course Evaluation 5 assignments (20 % of the final mark); Mid-term (35 %); Project (35 % of the final mark).

Midterm Exam Two-hour exam. The format of the exam will be problems and short-answers.

Project The project will be discussed with the instructor. It will involve an essay of 10 double-space pages and a 20 min class presentation with questions asked by the instructor and audience. The essay and oral presentation worth, 20 % and 15 %, respectively.

To pass the course, you must obtain a minimum of 50% in the average of assignments, midterm and project. One should write the midterm and prepare the project to pass the course. Obtaining a good average grade in the assignments and midterm is not sufficient to pass the course.

• Scholastic Offense Policy: You should be familiar with the Scholastic Offense Policy in the Academic Calendar. Scholastic offenses are taken seriously and students are directed to read the appropriate policy, specifically, the definition of what constitutes a Scholastic Offense, at the following Web site:
• **Plagiarism** is a serious Scholastic Offense. Students should write their essays and assignments individually. Copying of assignments will involve penalties in the grades. In essays, whenever a student takes an idea or a passage from another source, appropriate reference should be given.

• **Exam Distress Policy:** It is the policy of the Department of Chemistry that when a student takes a test or an examination, one should have deemed oneself fit to do so. Claims of distress or medical issues after the fact will not be considered as a basis of a grade appeal.

Absences, Code of Conduct

• Failure to complete or write the midterm, or the final, or the assignments will result in a mark of zero for the missed item, and potential failure in the course, unless a valid medical or compassionate reason has been approved and an exemption has been granted. The Policy of Accommodation for Medical Illness is found in the web site: https://studentservices.uwo.ca/secure/index.cfm and for further policy information please visit http://www.uwo.ca/univsec/handbook/appeals/accommodation_medical.pdf

• **Missed exam:** If you miss the final exam, contact your Deans office to obtain an SPC form. Students who are ill, for all exams and tests yet choose to write the final exam, must accept the mark that they receive.

• **Code of Conduct:** Students are reminded of the University’s Code of Conduct found on the university website. To maintain a high standard of learning environment in our classrooms, those who are disruptive, rude, or show unacceptable behavior, either to the instructor, or the other students, will be asked to leave.

• **Attendance:** Any student who, in the opinion of the instructor, is absent too frequently from class or laboratory periods in any course will be reported to the Dean of the Faculty offering the course (after due warning has been given). On the recommendation of the Department concerned, and with the permission of the Dean of that Faculty, the student will be debarred from taking the regular examination in the course. The Dean of the Faculty offering the course will communicate that decision to the Dean of the Faculty of registration.

Brief Course Description

In the course, the basic theory of electrostatics will be discussed with applications in chemical and biochemical problems. The basic theory will include conductors, dielectrics, estimation of the energy. Chemical problems that will be discussed are polarizability, intermolecular forces, usage of electrostatics in molecular simulations. In biological systems, the role of electrostatics in the stability of proteins and nucleic acids will be discussed.