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Abstract 

Background 

Patients who are diagnosed as vegetative have periods of wakefulness, but appear to be 

entirely unaware of themselves or their environment. However, recent studies using 

functional magnetic resonance imaging (fMRI) have shown that a significant minority of 

these patients are consciously aware; indeed, in some patients, communication with the 

outside world can be achieved with fMRI, even in cases where no possibility for 

behavioural (physical) interaction exists. Issues of expense and accessibility, however, 

preclude the use of fMRI assessment in the majority of vegetative patients. 

 

Methods 
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A novel electroencephalography (EEG) paradigm involving motor imagery was 

developed to detect command following – a universally accepted clinical indicator of 

awareness – in the absence of any overt behaviour, in a group of 16 patients who met the 

internationally agreed criteria for a diagnosis of vegetative state. 

 

Findings 

19% of the patients were repeatedly and reliably able to generate appropriate EEG 

responses to two distinct commands, despite being behaviourally entirely unresponsive.  

There was no significant relationship between aspects of the patients’ clinical histories 

(age, time since injury, etiology, behavioural score) and their ability to follow commands 

with this task. When separated according to etiology, 2/5 (20%) of the traumatic and 1/11 

(9%) of the non-traumatic patients were able to successfully complete this task.   

 

Interpretation 

Despite rigourous clinical assessment, a significant proportion of vegetative state patients 

are misdiagnosed.  The EEG method described here is relatively cheap, portable, widely 

available and objective, allowing the widespread use of this bedside technique for the re-

diagnosis of patients who behaviourally appear to be entirely vegetative, but who may, in 

fact, harbour residual cognitive function and even conscious awareness.  
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Introduction 

It is now well accepted that the vegetative state (VS) is frequently misdiagnosed when 

behavioural criteria are used1-3. Thus, up to 43% of patients who have been diagnosed as 

VS are reclassified as (at the least) minimally conscious when assessed by experienced 

teams1-3.  But is it possible that a further subset of conscious patients exists, but that they 

evade detection even after extensive clinical investigation in specialised centres? Indeed, 

recent functional neuroimaging studies have called into question several of the core 

principles that underpin the diagnosis of the VS; in particular, the extent to which we can 

truly consider that a patient is unaware of themselves and their environment simply 

because they exhibit no overt behavioural responses to any form of external stimulation.  

 

For example, using functional magnetic resonance imaging (fMRI), Owen et al.4 

demonstrated that a patient who appeared to be entirely vegetative was, in fact, aware and 

able to modulate her blood oxygen-level dependent (BOLD) response to perform a 

variety of mental imagery tasks.  Using the same technique, Monti and Vanhaudenhuyse 

et al.5 showed that this patient was not unique; indeed 17% (4/24) of a group of patients 

diagnosed as VS were shown to be consciously aware and were able to perform these 

tasks reliably in the fMRI scanner.  Moreover, one of these patients was able to answer 

“yes” and ”no” questions by modulating his fMRI response, despite being unable to 

initiate any form of functional communication at the bedside. These studies confirm, 

beyond any doubt, that there exists a population of patients who meet all of the 

behavioural criteria for the VS, but nevertheless retain a level of covert awareness that 

cannot be detected, even after thorough expert behavioural assessment. 
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In spite of these advances, performing fMRI in this patient group remains enormously 

challenging; in addition to considerations of cost and scanner availability, the physical 

stress incurred by patients as they are transferred to a suitably equipped fMRI facility is 

significant. Movement artefacts often occur in imaging datasets from patients who are 

unable to remain still, while metal implants, including plates and pins which are common 

in many traumatically injured populations, may rule out fMRI altogether.  

 

Electroencephalography (EEG) measures the activity of groups of cortical neurons from 

scalp electrodes and is far less expensive than MRI, both in terms of initial cost and 

maintenance.  EEG recordings are unaffected by any resident metallic implants and, 

perhaps most importantly, can be used at the bedside6.  In the EEG record, imagined 

movements (motor imagery) are evident in the form of reductions of power – or event-

related desynchronisations (ERD) – of the mu (~7-13Hz) and/or beta (~13-30Hz) bands 

over the topographically appropriate regions of the motor cortex – for example, over the 

lateral premotor cortex for hand movements and over more medial premotor cortex for 

toe movements7.  In some individuals, these ERDs may also be accompanied by event-

related synchronisations (ERS; relative increases in power) over motor areas contralateral 

to, or surrounding, the ERD8, 9. Using classification techniques it is now possible, on the 

basis of these EEG responses alone, to determine the form of motor imagery being 

performed by a conscious individual with a high degree of accuracy10.  Here, we 

investigated whether the same general principles could be adapted to reliably detect 

covert conscious awareness in a convenience sample of sixteen patients who were 
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assumed to be entirely vegetative on the basis of repeated and thorough clinical 

evaluation by specialist teams.  
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Methods 

Patients 

Sixteen VS patients were assessed at two European centres – Addenbrooke’s Hospital, 

Cambridge, UK, and University Hospital of Liège, Belgium.  Demographic and 

diagnostic information are presented in Table 1. Five of the patients had sustained a 

traumatic brain injury (TBI), while the remaining eleven had sustained a non-traumatic 

brain injury (non-TBI). There were no significant differences between the two groups in 

terms of length of time since injury (Mann-Whitney U(16) = 14, p=.126), or Coma-

Recovery Scale-Revised (CRS-R) score (see Behavioural Assessment for a description of 

this assessment; Mann-Whitney U(16) = 38, p=.202). Patients who had sustained non-

TBIs were significantly older than those who had sustained TBIs (medians 44-years and 

29-years respectively, Mann-Whitney U(16) = 6, p=.015).  

 

Informed assent was acquired from all patients’ families and medical teams. For patients 

tested in Cambridge, ethical approval was provided by the National Research Ethics 

Service (National Health Service, UK).  Ethical approval for those tested in Liège, was 

provided by the ethics committee of the University Hospital and Faculty of Medicine of 

the University of Liège. 

 

Healthy Control Participants 

Twelve participants, median age 25 years (range 21-31 years), were recruited from the 

School of Social Sciences, University of Western Ontario (London, ON, Canada). All 

participants were English speakers and reported no neurological conditions.  Informed 
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consent was obtained from all participants prior to the experiment.  Ethical approval was 

provided by the Psychology Research Ethics Board (Department of Psychology, 

University of Western Ontario, London, ON, Canada). 

 

Behavioural Assessment 

All patients were admitted for 4-5 days as part of a separate protocol and were assessed 

with the CRS-R11 on each day.  The CRS-R was developed in order to differentiate 

between VS and minimally-conscious patients and includes six subscales addressing 

auditory, visual, motor, oromotor, communication and arousal functions. The highest 

CRS-R score and diagnosis from this 4-5 day assessment is included in Table 1.  At no 

point during the 4-5 days of CRS-R assessments did any patient demonstrate behaviour 

inconsistent with a diagnosis of VS. 

 

Motor Imagery Task Procedure 

The EEG task was separated into two blocks – right-hand imagery and toe imagery.  All 

patients completed at least 4-blocks of each type of movement (range 4-8), dependent on 

the patient’s level of agitation at the time of assessment.  All healthy controls completed 

6-blocks.  Block order was pseudo-randomised so that no more than 2-blocks of the same 

imagery type were completed consecutively.  Each block began with the auditory 

presentation of the task instructions for that block.  For the right-hand and toe blocks 

respectively, the instructions were: 
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“Every time you hear a beep, try to imagine that you are squeezing your right-hand into a 

fist and then relaxing it // wiggling all of the toes on both your feet, and then relaxing 

them.  Concentrate on the way your muscles would feel if you were really performing 

this movement.  Try to do this as soon as you hear each beep.” 

 

The instructions were followed (after 5-seconds), by the binaural presentation of 15 tones 

(600Hz, 60ms-duration) with an inter-stimulus interval of between 4.5 and 9.5 seconds 

(randomly selected from a uniform distribution on each trial).  Each block concluded with 

an instruction to relax.  All participants were provided with a short break before the onset 

of the next block.   

 

All healthy participants also completed a control condition identical to the above motor 

imagery paradigm, with the exception that they were instructed by the experimenter to 

listen to the instruction and then simply mind-wander during the block – i.e. not to follow 

the commands.  The order of task completion was randomised for each healthy 

participant.   

 

EEG pre-processing 

EEG was recorded from either a 129-electrode cap (Cambridge, UK and London, ON) or 

a 257-electrode cap (Liège; Electrical Geodesics Inc., Oregon) referenced to the vertex. 

In order to equalise the number of channels across patients, the 129-channels 

corresponding to those in the 129-electrode cap were subsequently selected from the 257-

channel cap.  This step ensured that the same number of EEG features were used for 
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classification of motor imagery, and that accuracies were comparable across centres.  

Data were filtered offline between 1-40Hz, segmented into epochs of 5.5-seconds 

(including 1.5-seconds prior to each tone), and baseline corrected within 500ms prior to 

the tone.  Bad channels were identified by inspection (channel variance > ~250) and 

replaced with interpolations of their neighbours (InvDist, EEGLAB12).  All channels, 

including the online reference, were re-referenced offline to the average of their four 

geodesically nearest neighbours using a laplacian operator.  This method of local average 

referencing has been shown to produce focal patterns of ERD and ERS13.  Trials 

containing large movement artefacts were excluded. A median of 114 trials contributed to 

each patient’s single-trial analysis (range 60-202).  The 25 electrodes located over the 

motor area (covering the area centrally from C3 to C4; see Panel 1 for their locations) 

were selected from the original 129-electrodes to contribute to the single-trial 

classification, since this is the area of the scalp over which motor-imagery related activity 

is known to be localised.  The median number of channels from these 25 that were 

interpolated prior to the analyses was 2 (range 0-8).  The median number of trials 

contributing to the healthy controls’ analyses was 171 (range 154-180), with a median of 

1 (range 0-6) interpolated channel. 

 

Classification Analyses 

For each participant, a linear support vector machine (SVM)14 classifier was trained with 

the filtered and artefact-rejected data to classify single trials into one of two classes 

(right-hand or toe motor imagery). EEG data from the 25 electrodes selected across the 

motor cortex in every trial were downsampled to 100Hz.  Log power values within the 
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mu (7-13Hz), low beta (13-19Hz), middle beta (19-25Hz), and high beta (25-30Hz) 

frequency ranges were calculated at each time-point.  All the band-power values within 

the ‘action period’ between 0.5s to 3.5s after the tone in each trial were then concatenated 

by channel and used to construct a single feature vector for each trial. This allows the 

classifier to be trained on discriminative spatiotemporal patterns in the EEG across the 

two types of motor imagery. Block-wise cross-validation was employed to determine the 

classifier’s generalisation error across the entire dataset.  Specifically, the classifier was 

repeatedly trained and tested, by leaving out two blocks at a time (one right-hand, and 

one toe block), training on the remaining blocks and testing the generated SVM 

therefrom with the excluded blocks. During each repetition, features in the training and 

test set were z-score normalised with the mean and standard deviation of the training set. 

This block-wise cross-validation procedure, along with the pseudo-randomised block 

order, ensures that task-irrelevant intra- and inter-block correlations in the EEG cannot 

significantly account for the classification results.   

 

To estimate overall accuracy for a patient or control, all the binary single-trial 

classification outcomes from the block-wise cross-validation procedure above were 

concatenated and modeled as a binomial process (using MATLAB’s binofit function). 

This procedure assumed that the individual classification outcomes were binomially 

distributed, and calculated the maximum likelihood estimate of the overall correct 

classification probablity. These maximum likelihood estimates were then converted to % 

accuracy scores. Finally, a test of whether the 99% and 99.9% confidence intervals for 
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the estimates included chance (50%) was used to ascribe a significance level to each 

score. 

 

In order to confirm that significant classifiability could not come about as a result of 

global, non-task-relevant changes in background EEG which co-varied with the pseudo-

randomized block order, the same analyses as above were applied to band-power features 

from a ‘baseline period’ 500ms wide, starting 500ms before each tone.  The classification 

accuracy in the action period after each tone (as described above) was judged to be 

significantly greater than the classification accuracy in this baseline period if it fell 

outside of the binomial confidence intervals (99% and 99.9%) for the baseline accuracy.  

These comparisons not only ensured that classification accuracy was significant 

following each tone, but also that it was non-significant before the tone, and then 

increased significantly following it. That is, the classification accuracy in the action 

period was generated by consistently timed motor imagery initiated after each tone. 

 

All calculations were performed in MATLAB, using a combination of custom scripts, 

EEGLAB12 functions, and the g.BSanalyze software provided by g.tec medical 

engineering GmbH.  Statistical analyses on the relationship between aspects of patients’ 

clinical history and their ability to follow-command with this EEG task (linear and 

logistic regressions) were performed with SPSS. 

 

Role of the funding source 
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The funding sources had no involvement in study design, collection, analysis, or 

interpretation.  The corresponding author had full access to all data in the study and had 

final responsibility to submit for publication. 
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Results 

Three of the 16 VS patients (19%) were able to follow the given commands to a degree 

that was significantly detectable (all p<.01) with this EEG technique (individual 

classification accuracies are listed in Table 1).  The classification accuracies for these 3 

patients ranged from 61-78% (mean 70%).  None of these three patients returned 

significantly classifiable EEG during the baseline period (500ms prior to each tone; 

mean: 56%, all p>.05).  For all three patients, the classification accuracy in the time-

window after each tone was significantly greater than that achieved in the baseline period 

(all p<.01). 

 

When separated according to etiology, two of the five TBI VS patients (40%, all p<.001) 

and 1 of the eleven non-TBI patients (9%, p<.01) returned positive EEG outcomes. There 

were no significant differences in classification accuracies between these two sub-groups 

(means 48% and 52% respectively; Mann-Whitney U(16) = 27, p=.955), nor in the 

proportions of patients significantly following commands (Fisher’s exact test, p=.214).   

 

Nine of the twelve healthy control participants (75%) produced EEG data that could be 

classified significantly above chance (all p<.01).  The accuracies for these nine 

participants ranged from 60-91% (mean 68%), with the three non-significant controls 

producing EEG that could only be classified between 44-53%.  When completing the 

control condition – listening to the same imagery task but not following the commands – 

no healthy control participant returned EEG responses that could be significant classified 

according to the commands (mean: 51%, range: 45-58%, all p>.05). 
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A stepwise multiple linear regression analysis including the factors i) age at time of 

injury (months), ii) time since injury (months), iii) CRS-R score, and iv) etiology 

(traumatic/non-traumatic) failed to significantly predict classification accuracy. A binary 

logistic regression analysis with the same factors also failed to predict positive EEG 

outcome (significant classification or otherwise). These results indicate that it is not 

possible to predict a patient’s ability to follow commands in this EEG task on the basis of 

any of these aspects of their clinical history.  
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Discussion 

Standard clinical assessments of command-following, which are based on behavioural 

observation, are fundamentally subjective.  The results of recent fMRI studies have 

suggested that up to 17% (4/23) of patients considered to be in the VS following 

behavioural assessment are, in fact, capable of following commands when those 

commands do not require an overt motoric behaviour, but rather, a change in blood 

oxygenation level dependent (BOLD) reponse4, 5. Here we have demonstrated that covert 

awareness in the VS can be identified with a similar level of accuracy by means of a 

considerably cheaper and more portable bedside method. Indeed, using this technique, 

19% (3/16) of the patients who appeared to be entirely vegetative on the basis of repeated 

specialist behavioural assessment were shown to be aware and capable of significantly 

and consistently modulating their EEG responses to command. 

 

In order to fully appreciate the true weight of these results, it is first necessary to consider 

the multiple criteria that must be met before a significant positive EEG result can be 

returned for any given patient. First, it is necessary for each patient to modulate the 

appropriate frequency bands of the EEG signal that are associated with motor imagery, 

over the same regions of the head where this activity is known to occur in aware 

individuals (see Figure 1).  Second, in order for each type of imagery to be accurately 

classified, this modulation must occur in a consistent way across trials of the same 

imagery type – i.e. with a consistent time-course and frequency content – but must also 

differ consistently between the two types of imagery (right-hand and toe).  Finally, the 

classification of the patient’s EEG data must be significant in a binomial test. 
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Is it possible that appropriate patterns of activity could be elicited in these patients in the 

absence of awareness?  Could they somehow reflect an ‘automatic’ response to aspects of 

the task instructions, such as the words ‘right-hand’ and ‘toes’, and not a conscious and 

overt 'action' on the part of the patient?  This is extremely unlikely and we know of no 

data that would support such a conclusion using a task like the one employed here.  The 

task instructions were delivered once at the beginning of each block of 15 cues (short 

tones) that signalled the time to begin each imagery trial. Any ‘automatic’ response to the 

previously presented verbal instruction would then have to abate and recur in synchrony 

with these cues; cues that carried no information in of themselves about the task to be 

performed.  Indeed, 75% of the healthy control participants returned positive EEG 

outcomes when completing this motor imagery task.  However, when these same 

individuals were instructed not to follow the commands – i.e. not to engage in motor 

imagery – not one participant returned a positive EEG outcome. Evidently, any automatic 

brain responses generated by listening to the instructions are not sufficient for significant 

task performance; rather, an act of consistently-timed, volitional command-following is 

required. Furthermore, in all three of the patients who returned significant positive EEG 

outcomes following the commands, EEG activity before the commands was non-

classifiable, providing further evidence that they were all producing task-appropriate 

EEG responses in time with the cues – as required by the task instructions. 

 

In this context then, it is clear that successful performance of these EEG tasks represents 

a significant cognitive feat, not only for those patients who were presumed to be 
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vegetative, but also for healthy control participants. That is to say, to be deemed 

successful, each respondent must have consistently generated the requested mental states 

to command for a prolonged period of time within each trial, and must have consistently 

done so across numerous trials. Indeed, one behaviourally VS patient (Patient 13) was 

able to produce EEG-responses that were classified with a success rate of 78% (p<.001). 

In other words, consistently appropriate EEG responses were generated across ~100 

trials.  It is notable that all but one of the twelve control participants produced EEG data 

that were less accurately classified than this patient. 

 

Conversely, consider what these patients appeared to be capable of when assessed 

behaviourally; that is, when tested using accepted, standard clinical measures that were 

administered by experienced, specialist teams. All of the patients were tested with the 

CRS-R across at least 4 days, and at no point during any of these assessments did any of 

these patients demonstrate any behavioural sign of awareness (e.g. visual fixation, visual 

pursuit, localisation to pain). More importantly, none exhibited any evidence of a residual 

ability to respond to command.  It is clear, then, that these patients were not 

misdiagnosed in the normal sense of the word.  Indeed, rigourous assessments by 

experienced teams showed they were all correctly diagnosed (as vegetative) according to 

existing behavioural criteria. Clearly however, those criteria did not adequately capture 

the actual condition of these patients in at least 19% of the cases.  

 

What, then, is the appropriate diagnosis for these patients who can follow command with 

an EEG response, but not with any overt physical behaviour? Of course, we cannot draw 
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any strong conclusions about their inner worlds based solely on an ability to generate 

accurate and consistent EEG responses to command. However, performance of this 

complex task does make multiple demands on many cognitive functions, including 

sustained attention (over 90-second blocks), response selection (between the two imagery 

tasks), language comprehension (of the task instructions) and working memory (to 

remember which task to perform across multiple trials within each block) – all aspects of 

‘top-down’ cognitive control that are usually associated with – indeed, could be said to 

characterise – normal conscious awareness15. A fuller characterisation of the residual 

cognitive abilities in this patient group, and how they contribute to command-following, 

is a question for future studies. However, the results of the current study demonstrate that 

functional neuroimaging – and in this case EEG specifically – is better suited for 

providing such a characterisation than existing methods of clinical assessment, since none 

of these patients were able to follow commands behaviourally. 

 

Why is there a range of significant classification accuracies for both patients and healthy 

controls?  There are several possible reasons for this.  First, brain-state classification 

without any prior training on the part of the individual has been shown previously to 

produce relatively low classification accuracies in healthy participants (e.g. ~75% for 

right-hand vs. feet imagery8) and it follows that the same would be true for any patient 

group.  Second, differences in attention or working memory capabilities are also likely to 

have played a role in the variance of classification accuracies within the patient group.  

Indeed, a patient whose diminished working memory leads them to forget the instructions 
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for the current block after, say, 10 tones will only produce EEG ‘noise’ for the classifier 

in the remaining 5 tones, leading to reduced classification accuracy.   

 

Why were three healthy controls unable to produce EEG that could be classified 

significantly above chance?  As noted above, naïve participants who receive no feedback 

or training in imagery tasks are likely to produce relatively lower classification 

accuracies.  Indeed, some healthy individuals remain unable to produce reliable 

classification, even with feedback training10 – so called ‘brain-computer interface 

illiterates’.  The absence of a positive EEG outcome for three (aware) healthy controls 

highlights the importance of interpreting only positive results in patients, since it 

demonstrates unequivocally that a null EEG outcome does not necessarily reflect a lack 

of awareness.  Alongside behavioural assessment and other functional neuroimaging 

approaches16, multiple testing sessions with this EEG paradigm across a number of days 

will provide each patient with greater opportunity to demonstrate their covert awareness, 

if it exists.  

 

The method described here has the potential to fundamentally change the assessment of 

this challenging patient group because EEG is highly portable, inexpensive, can be 

performed at the bedside, is available in most hospitals, and can be used with patients 

who have metal implants.  Moreover, in the most comprehensive fMRI study to date, the 

data from 17% (9/54) of patients could not be interpreted at all due to excessively noisy 

data from motion artefacts5.  In comparison, EEG is less affected by small motion 

artifacts, resulting in a drop-out rate of zero in the current study.   
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These results demonstrate that consistent responses to command – a reliable and 

universally accepted indicator that a patient is not vegetative – need not be expressed 

behaviourally at all, but rather, can be determined accurately on the basis of EEG 

responses. The success of this technique also paves the way for the development of so-

called brain-computer interfaces17 – or simple, reliable communication devices – in this 

patient group. Such devices will provide a form of external control and communication 

based on mappings of distinct mental states – for example, imagining right-hand 

movements to communicate “yes”, and toe movements to communicate “no”.  Indeed, 

the degrees of freedom provided by EEG have the potential to take this beyond binary 

responses to allow methods of communication that are far more functionally expressive, 

based on multiple forms of mental state classification18-20.  The development of 

techniques for the real-time classification of these forms of mental imagery will open the 

door for routine two-way communication with some of these patients, allowing them to 

share information about their inner worlds, experiences and needs. 
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Research in Context 

Systematic Review 

Owen et al. were the first to identify a patient in the vegetative state who, despite being 

unable to follow commands with her behaviour, was able to follow commands by means 

of modulating her fMRI-detected BOLD response.  Monti and Vanhaudenhuyse et al. 

later showed that 17% (4/24) of a group of patients considered to be vegetative were 

similarly capable of covertly following command with fMRI.  Due to the expense and 

lack of portability of this method, however, fMRI is incapable of providing a truly 

practical means of assessment for this patient group.  Thus far, there have been no reports 

of covert yet consistent and reliable command-following performed by a patient in the 

vegetative state outside of an fMRI scanner. 

Interpretation 

The prevalence of covert command-following within our cohort of vegetative patients – 

19% (3/16) – is in accord with that already reported with fMRI, and reinforces the 
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evidence that a significant minority of this patient group retain awareness that is not 

consistent with their externally-observable behaviour.  The method reported here is the 

first evidence that covert command-following may be detected at the bedside of a 

vegetative patient, by means of the considerably cheaper and more accessible medium of 

EEG, and therefore has the potential to reach all vegetative patients and fundamentally 

change their bedside assessment. 
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Figures 

Panel 1. Scalp locations of the 25 electrodes contributing to the classification analyses.  

The locations of C3, C4, Cz, and FCz are labelled. 
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Figure 1. 
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Figure 1 Legend.  When the scalp distributions of data from the classification procedure 

are plotted, it is evident that the neurophysiological basis of the positive EEG outcome – 

with clear foci over the hand and toe motor-areas – are formally identical when compared 

between a healthy control participant and those three vegetative state patients who 

significantly followed commands with this EEG task.  (Maps show the scalp distribution 

of the single feature – time-point x frequency-band – with the highest absolute coefficient 

value from one training run of the cross-validation procedure.  Red colours indicate 

coefficient values greater than zero, blue indicate values less than zero).   
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Table 1. Patient demographics and EEG classification accuracies.  CRS-R: Coma Recovery Scale – Revised; **: p<.01, ***: 

p<.001, x: Non-signficant. 

	  

	  

Patient ID 
 Gender 

Age at 
Assessment 

(years) 

Interval 
post-ictus 
(months) Etiology CRS-R Diagnosis 

Number of 
trials 

contributing 
to analyses 

EEG 
Classification 

Accuracy 

Significant 
EEG 

Command 
Following?  

1 M 35 9 Anoxia 7 VS 202 61.38 ** 
2 M 63 39 Anoxia 5 VS 113 61.90 x 
3 M 55 21 Anoxia 4 VS 160 47.50 x 
4 M 35 32 Anoxia 6 VS 69 43.47 x 
5 M 30 24 Anoxia 6 VS 102 51.96 x 
6 F 41 56 Anoxia 5 VS 132 53.78 x 
7 M 63 32 Anoxia 7 VS 76 56.58 x 
8 F 44 1 Anoxia 3 VS 86 48.83 x 
9 M 48 94 Anoxia 6 VS 116 58.62 x 

10 F 36 77 Stroke 3 VS 114 39.47 x 
11 M 62 1 Stroke 6 VS 142 48.59 x 
12 M 45 23 Trauma 6 VS 146 71.23 *** 
13 M 29 3 Trauma 6 VS 96 78.13 *** 
14 M 29 16 Trauma 6 VS 150 40.70 x 
15 M 14 18 Trauma 6 VS 60 41.66 x 
16 M 21 7 Trauma 7 VS 98 47.95 x 
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