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We recently reported a correspondence between event-related

potential (ERP)-based evidence of bottom-up attention and

command following among patients with severe brain injury.1

The P3a ERP reflects bottom-up attention and is often

obtained by comparing responses to nontarget deviant and stan-

dard stimuli.2 The P3b ERP reflects top-down attention and is

often obtained by comparing responses to target deviant and

standard stimuli.2 In our article,1 we quantified bottom-up

attention by comparing responses to all deviant stimuli—target

and nontarget—and all standard stimuli. In their letter, Bonfi-

glio and Carboncini highlight that our ERP definition com-

prises both P3a and P3b components and postulate that top-

down attention may underlie our reported relationship between

command following and ERP-based evidence of attention.

Our contrasts delineate a hierarchy of cognitive abilities.

We quantified bottom-up attention by comparing all deviant and

standard trials. This contrast has more statistical power than the

conventional P3a contrast, because more deviant trials are avail-

able. Furthermore, we quantified top-down attention by directly

comparing target and nontarget deviant trials. This approach was

necessary because a deviant stimulus is only a target in our para-

digm if the participant selectively attends to that deviant stimulus

when instructed. If the participant does not comply with task

instructions, however, the conventional P3b contrast (target vs

standard) could return a significant effect driven by attentional

orienting to deviant stimulation. This concern is particularly rele-

vant for the patients in our investigation who could not overtly

confirm that they understood and followed task instructions.

To examine any differences between the two approaches,

we conducted the P3a and P3b comparisons described by Bon-

figlio and Carboncini. These comparisons yielded findings con-

sistent with our original report1; we detected P3a effects from

all healthy volunteers and all patients who demonstrated com-

mand following, and we did not detect P3b effects from any of

the patients. The conventional P3b contrast yielded a higher

hit-rate in our healthy volunteers (100%) than our original

approach (67%); this likely results from the greater depth of

processing elicited by targets relative to standards, as compared

with targets relative to nontargets. However, as explained above,

the conventional P3b contrast does not necessarily isolate top-

down attention in our paradigm.

Bonfiglio and Carboncini also propose an explanatory

role of cognitive attitudes in command following, which could

be quantified using blink-related electroencephalogram

(EEG)3,4 or functional magnetic resonance imaging (fMRI)-

based activation of particular cortical networks. We cannot

directly investigate this proposal, because our EEG and fMRI

data were not collected simultaneously. However, the evidence

linking intrinsic networks to external awareness adds weight to

their hypothesis.5
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In a 2013 article in the Annals of Neurology, Yuki Hitomi et al

identified a homozygous variant in TNK2 as the causative

mutation of 3 severe autosomal recessive infantile onset epilepsy

patients in 1 family.1 However, definitive proof of pathogenicity

will require identification of further homozygote or compound

heterozygote mutations in individuals with a similar phenotype.

We now report 2 patients with similar findings, establishing

mutations in TNK2 as a genetic cause of severe autosomal

recessive infantile onset epilepsy.

Patient A is a 20-month-old nondysmorphic girl of

healthy nonconsanguineous parents. At 13 months of age, she

started to have spasm seizures refractory to various antiepileptic

drugs, and her cognition regressed significantly soon after sei-

zure onset. Adrenocorticotropic hormone controlled the seizures

completely, but spasm relapsed after 6 months of treatment.

Brain magnetic resonance imaging was normal, whereas 24-

hour electroencephalogram showed hypsarrhythmia. The patient

and her parents were sequenced by whole exome sequencing

and analyzed by Clinical Sequencing Analyzer (WuXi Next-

CODE, Cambridge, MA), and a pair of compound heterozy-

gote variants in TNK2 (c.2860 G>T, c.3004 G>T) were found

and verified by Sanger sequencing.

Patient B is an 18-month-old girl and the second of 3

children of healthy parents. At the age of 11 months, she exhib-

ited seizure activity characterized by clusters of spasms. Various

antiepileptic drugs and ketogenic diet had no effect to seizures.

Trio-based whole exome sequencing and analysis found a pair

of compound heterozygote variants in TNK2 (c.1705 A>G,

c.2243 G>A), which were verified by Sanger sequencing.

The previously reported proband was a girl of 31 months

who had focal seizures since age 19 months. Cognitive regression

occurred soon after seizure onset.1 She also developed autistic fea-

tures. Her younger brother developed epilepsy at the age of 21

months, with focal seizures. Early development was normal, but

speech and cognitive regression occurred soon after epilepsy

onset.1 Our finds confirmed that TNK2 mutations can cause

severe autosomal recessive infantile onset epilepsy and expand the

phenotype to infantile spasm.
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We thank Mao et al for their report on the identification of

compound heterozygous mutations in the TNK2 gene in 2

unrelated patients with infantile onset refractory epileptic

spasms. In our previous publication, we reported a homozygous

TNK2 mutation in 3 of 3 children of nonconsanguineous

parents with severe, infantile onset focal epilepsy and cognitive

regression, along with supporting functional studies.1 Despite

sequencing efforts in large cohorts of patients with epilepsy dur-

ing recent years, no other mutations in TNK2 have been

reported so far. The findings of Mao et al lend further support

to our initial hypothesis that recessive mutations in the TNK2

gene may play a role in severe forms of infantile onset epilepsy.

Furthermore, the current report expands the phenotypic spec-

trum associated with TNK2 mutations to also include infantile

spasms, which was not a feature in our family. However, we

believe that these findings should be interpreted with caution in

light of recent observations that arose after the publication of

the Exome Aggregation Consortium (ExAc) data, which were

unavailable at the time of our original publication.2 We now

know that TNK2 ranks among the top 25% most tolerant

genes in the genome, translating to a relatively large number of

polymorphic functional variants observed in this gene in the

general population.3 Given this observation, the identification

of compound heterozygote mutations is not that unexpected.

Conversely, we did not identify any compound heterozygote
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