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INTRODUCTION

There is now overwhelming evidence that patients with
neurodegenerative disorders, including Parkinson’s disease
(PD), Huntington’s disease (HD), progressive supra-
nuclear palsy (also known as Steele-Richardson-Olszewski
syndrome), multiple system atrophy, Alzheimer’s disease
(AD), KarsakofPs syndrome and fronto-striatal dementia
exhibit diverse patterns of cognitive impairment that can
include deficits of ‘executive function’. The term ‘execu-
tive function’ generally refers to those mechanisms by
which performance is optimized in situations requiring the
simultaneous operation of a number of different cognitive
processes (Baddeley 1986). Executive functioning is
required, therefore, when sequences of responses must be
generated and scheduled and when novel plans of action
must be formulated and carried out. The frontal lobes have
long been known to play an important role in executive
functioning, although the fact that the ‘dysexecutive syn-
drome’ may be observed in patients with damage to other
brain regions (Morris et al. 1990), suggests that an equiva-
lence between the prefrontal cortex and executive func-
tioning cannot be assumed. In addition, much of the
research on executive deficits in neurodegenerative groups
has focused on broad descriptions of individual patient
groups and how their behaviour might best be character-
ized using standard clinical neuropsychological tools. For
example, impairments on the Wisconsin Card Sorting Test
(Grant and Berg 1948}, a classic test of executive function,
have been described in many neurodegenerative groups
including PD (Lees and Smith 1983), progressive supra-
nuclear palsy (Pillon et al. 1986) and HI (Josiassen et al.
1983). Tasks such as the Wisconsin Card Sorting Test place
significant demands on many different aspects of cognitive

function some, or all, of which may be impaired in a given
patient and performance is ultimately determined, there-
fore, by a complex interaction between multiple dysfunc-
tional processes. In recent years, however, improved
methods of assessment combined with a theory-driven
approach to task design has led to great advances in our
understanding of the fundamental mechanisms which
mediate these higher-order cognitive processes. As a direct
result, it has been possible to define impairments of execu-
tive function in neurodegenerative diseases more precisely,
in terms of the specific neuropsychological mechanisms
involved.

FUNCTIONAL ANATOMY OF EXECUTIVE
FUNCTION: WORKING MEMORY

One aspect of executive function that has received much
attention in recent years is working memory. The term
‘working memory’ was introduced into the experimental
psychology literature by Baddeley (1986) to replace the
existing concept of a passive short-term memory store and
to emphasize, within a single model, both the temporary
storage and the ‘on-line’ manipulation of information that
occurs during a wide variety of cognitive activities. Since
then, considerable evidence has accumulated to suggest
that the lateral surface of the frontal-lobe plays a critical
role in certain aspects of working memory. This evidence
comes from the study of patients with excisions of frontal
cortex (Petrides and Milner 1982; Owen et al. 1990, 1995a,
1996c¢; for a review, sce Petrides 1989), from lesion and
¢lectrophysiological recording work in nonhuman pri-
mates (Goldman-Rakic 1987; Petrides 1994) and more
recently, from functional neuroimaging studies in humans
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Figure 8.1. Schematic drawing of
the lateral surface of the human
brain to indicate the location of the
dorsolateral frontal cortex (areas 9,
46 and 9/46), and the ventrolateral
froneal cortex (areas 45 and 47/12).
The numbering scheme is raken
from the recent cytoarchitectonic
reparcellation of the human frontal
cortex by Petrides and Pandya
(1994). ifs: inferior frontal sulcus;
sfs: superior frontal sulcus.

(Jonides et al. 1993; Petrides et al. 1993a,by; McCarthy et
al. 1994; Smith et al. 1995, 1996; Courtney et al. 1996;
Gold et al. 1996; Goldberg et al. 1996; Owen et al. 1996a,b;
Sweeney etal. 1996), In the monkey it has been shown that
lesions confined to one part of the dorsolateral frontal
cortex, namely the cortex lining the suleus principalis (i.e.
area 46) result in severe impairments on tests of spatial
working memory, such as spatial delayed alternation and
delayed response (Goldman-Rakic 1987; Fuster 1989%;
Chapter 1). Similarly, monkeys with lesions limited to the
mid-dorsal part of the lateral frontal cortex are severely
impaired on certain nomspatial working memory rasks
(Petrides 1988, 1991, 1994). On the basis of this and re-
lated evidence, a general theoretical framework regarding
the role of the different regions of the lateral frontal cortex
in working memory processing has recently been des-
cribed (Petrides 1994). According to this view, rhere are
two executive processing systems within the lateral frontal
cortex which mediate different aspects of working
memory through reciprocal connections to modality
specific posterior cortical association areas. The first stage
ofinteraction between these posterior association areas
and frontal regions occurs primarily within the ventrolac-
eral frontal cortex {i.e. areas 45 and 47). Thus, these areas
(seec Figure 8.1} are concerned primarily with the active
organization of sequences of responses based on con-
scious, explicit retrieval of information from shore-term
memory. By contrast, the mid-dorsolateral frontal cortex
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(dorsal area 46 and area 9} is assumed to constitute a
second level of interaction of executive processes with
memory and is recruited only when the active manipula-
tion and monitoring of information within working

memory is required (Figure 8.1). This two-stage model of
lateral frontal cortical function, by which two anatomically
and cyroarchitectonically distinct regions of the frontal
lobe are linked with different aspects of executive pro-
cessing, describes how information is both retained and
manipulated within working memory to optimize per-
formance on a variety of tasks.

While the human and animal studies described above
support the view that different regions of the prefrontal
cortex play distinct roles in working memory, this involve-
ment appears to depend critically on reciprocal connec-
tions with more posterior neural structures. Goldman-
Rakic (1990) has described several multisynaptic connec-
tions berween the prefrontal cortex and the hippocampal
formation and has speculated that these connections imply
a reciprecal functional relationship in working memory
{Goldman-Rakic et al. 1984). In keeping with this sugges-
tion, it is well established that damage to the hippocampus
and related structures in rats produces severe and endur-
ing deficits in spatial working memory tasks (Olton et al.
1978; Olton and Papas 1979; Rawlins and Olon 1982;
Rawlins and Tsaltas 1983; Aggleton et al. 1986; Sziklas and
Petrides 1993). Thus, contemporary accounts view
working memory as a distributed process that critically
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depends on a close functional interaction between regions
of the lateral frontal cortex and more posterior cortical
structures (including the hippocampus).

WORKING MEMORY AND
NEURODEGENERATIVE DISEASE: AN
OVERVIEW

In recent years, a number of studies have assessed working
memory in patients with PD (Gotham et al. 1988; Morris
et al. 1988; Bradley et al. 1989; Cooper et al. 1991, 1993;
Singh et al. 1991; Owen et al. 1992, 1993, 1995b; Postle et
al. 1993). Although methodological differences preclude
direct comparisons between studies, in general the results
lend support to the notion that deterioration of working
memory processes in these patients progresses in parallel
with the degeneration of motor functions that charac-
terizes this disorder. For example, while nonmedicated
patients with mild clinical symptoms have been repeatedly
shown to be unimpaired on a test of spatial working
memory {Morris et al. 1988; Owen et al. 1992), deficits on
the same task have been observed in medicated patients
and particularly in those with severe clinical symptoms
(Owen et al. 1992). Further comparisons between studies
also suggest that some aspects of working memory may be
affected earlier in the course of PD than others. For
example, Bradley et al. (1989) found that patients with
mild to moderate PD were impaired on a test of visuospa-
tial working memory, whilst performance on an analogous
test of verbal working memory was unaffected. Similarly,
Postle et al, (1993) and Owen et al. (1997) have demon-
strated that, while spatial working memory is impaired in
medicated patients with mild PD, working memory for
visual shapes is relatively preserved.

Working memory performance has also been investi-
gated in HD using a variety of spatial (Orsini et al. 1987;
Lange et al. 1995; Lawrence et al. 1996), visual {Orsini et
al. 1987, Rich et al. 1996) and verbal (Orsini et al. 1987),
tasks. For example, Rich et al. (1996) have shewn that HD
patients perform significantly worse than controls on all
versions of the self-ordered pointing task devised by
Petrides and Milner (1982), making more returns to pic-
tures or abstract designs that have already been selected.
Polymodal deficits were also observed by Orsini et al.
{1987), who demonstrated that both spatial span and digit
span were similarly impaired in HD. In addition, on both
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tasks the HD patients performed more poorly than a group
of patients with PD.

Deficits have also been described in other neuro-
degenerative groups, including patients with AD (Baddeley
etal. 1986) on a variety of executive tasks that could be said
to involve working memory. The results of cross-sectional
comparisens between such studies or between different
neurodegenerative groups are difficult to evaluate in terms
the likely neuropathological mechanisms underlying the
deficits observed, for a number of reasons. Principally, many
different tasks have been employed which vary, both in
terms of the modality of the stimuli used and in terms of the
relative emphasis on different executive processes. Given
the theoretical and anatomical arguments outlined above,
such tasks are likely to depend on different components of
a widely distributed neural system. Second, the different
neurodegenerative groups studied often differ markedly in
terms of their clinical characreristics such as age of onset,
illness duration, rates of cognitive decline and medication
regimes. Third, many of the standard clinical neuropsycho-
logical tasks that have been employed to test executive func-
tion in ¢lderly neurodegenerative groups have not been
adequately validated in a normal ageing population.
Executive functions such as working memory appear to be
particularly vulnerable to the effects of normal ageing (van
Gorpand Mahler 1990), a pattern which may reflect the dis-
proportionate reduction in neuron density in the prefrontal
cortex and basal-ganglia (Haug and Eggers 1991).

TOWARDS A THEORETICALLY DRIVEN
APPROACH

In recent years, some of these issues have been addressed
directly in a series of studies that have attempted to use
a standardized battery of computerized tasks (The
Cambridge Neuropsychological Test Automated Battery:
CANTAB), including test of executive function, to assess
a broad range of neurodegenerative groups (Sahakian et al.
1988, 1990; Lange etal. 1992, 1995; Owen et al. 1992, 1993;
Robbins et al. 1992; Lawrence et al, 1996}, Two of these
tests, which assess different aspects of spatial memory, are
of particular relevance to the subject of this chapter as they
can be related directly to contemporary accounts of
working memory. Thus, broadly speaking, they map
directly onto the two frontal lobe (ventrolateral and dorso-
lateral), executive systems proposed by Petrides (1994),
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emphasizing the short-term retention and execution of
sequences of spatial responses on the one hand and active,
‘on-line’ manipulation of spatial information within a
spatial search task on the other. Moreover, the functional
architecture subserving performance on these tasks has
been investigated using positron emission tomography
(PET) (Owen et al. 1996b), the resulis of which concur
fully with the findings from comparisons between groups
of neurosurgical patients with frontal lobe or temporal lobe
excisions (Owen et al. 1990, 1995a). Finally, standardiza-
tion studies using large samptes (N>>340) of healthy vol-
unteers have provided important information about the
effects of normal ageing on task performance {Robbins,
1996).

The first of these two tasks, is a cornputerized version
of the block tapping test devised by Corsi (described in
Milner 1971). Each trial begins with the same arrangement
of nine squares, presented on the screen in a pseudo
random pattern, Subjects are instrucied to observe the
boxes because some will change color, one after the other,
Their task is to remember the location and the sequential
order of the boxes that change. During each series, one box
changes color for three seconds and then returns to white
before the next in the sequence changes to the same color.
The subject is then prompted by a tone to repeat the
sequence by touching the boxes in the same order. After
each successful trial, the number of boxes changing in the
next sequence is increased, from two up to a maximum of
nine boxes. Performance is scored according to the Asghest
level at which the subject successfully recalls the sequence
of boxes, Clearly, this task emphasizes the short-term
retention and reproduction of spatial information within
working memory but requires little manipulation of that
information and, in this sense, is likely to involve ventro-
lateral frontal areas according to the model proposed by
Petrides {1994). A recent functional imaging study com-
bining both PET and rmagnetic resonance imaging (MRI)
has verified that this is the case (Owen et al. 1996b), When
normal volunteer subjects performed a modified version of
this computerized task, a significant region of increased
cerebral blood flow (CBF) was observed in ventrolateral
frontal cortex (area 47) in the right hemisphere. No signifi-
cant changes were cbserved in more dorsolateral areas of

frontal cortex, even when subjects were required to learn
and reproduce a ‘supra-span’ sequence of eight boxes.

In terms of the absolute measure of spatial span, this
task is not sensicive to unilateral temporal lobe damage, or
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amygdalo-hippocampectomy (Owen et al. 1995a). Pacients
with frontal lobe damage are also unimpaired according to
this gross measure {Qwen et al. 1990), aithough deficits are
observed when one considers the number of trials required
to reach maximum span.

The second test of frontal executive function is essen-~
tially a modification of a task used by Passingham (1985)
to examine the effects of prefrontal cortex lesions in pri-
mates and is conceprually similar to the ‘radial arm maze’
which has been successfully used te assess working
memory in rats (Olton 1982). Subjects are required to
‘search through’ a number of colored boxes presenied on a
computer screen (by touching each one) in order to find
blue ‘tokens’ which are hidden inside by the computer.
The object is to avoid those boxes in which a token has
already been found. Like the span task described above,
this test places a significant load on memory for spatial
information, although unlike that test, it also requires the
active reprganization and manipulation of information
within working memory, factors which interact closely
with the more fundamental mnemonic requirements to
affect performance. Thus, control subjects often adopt a
search strategy which involves retracing a systematic
‘route’ and ‘editing’ or ‘monitoring’ those locations where
tokens have been found previously. This searching strat-
egy can be captured by an index which is demonstrably
uncontaminated by overall mnemonic performance
{Owen et al, 1990, 1996¢) and yet which correlates highly
with such performance (Robbins 1996). This strategy,
which has been described in detail elsewhere {Owen et al.
1990, 1997), is illustrated in Figure 8.2,

The emphasis on “strategy’ in this task clearly impli-
cates the dorsolateral frontal executive processing system
according to the model proposed recently by Petrides
{1994). It is important to note, therefore, that in a recent
PET study, significant changes in CBF were clearly ob-
served in the right mid-dorsolateral frontal cortex (areas
46 and 9), when subjects performed 1 slightly modified
version of this task (Owen et al. 1996b). In addition, as in
the spatial span task, the ventrolateral frontal cortex was
also activated, confirming that more basic mnemonic
factors also contribute to overall performance on this test.
Thus, the spatial search appears to be governed by two
major factors, one related to short-term spatial memory
and the othet to strategic processes, which depend upon
ventrolateral and dorsolateral regions of the frontal cortex,
respectively. The possibility that these two levels of excc-
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Spatial working memory; ‘'frontal’ strategy
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Figure 8.2. Left: a typical response pattern from one of the frontal
lobe patients (AW), illustrating how the ‘strategy’ scere is calculated.
Right: corresponding normal response pattern from a typical healthy
control subject (HM). On the right hand side, the spatial arrange-
ment of boxes as they appear on the screen is illustrated schemat-
ically. For each subject, four example trials (‘sets’) are shown.
Horizontal rows represent the choices (boxes) made during each
search through the array and vertical columns represent the total

utive processing constitute distinct functional systems
which are differentially involved in these two tasks is sug-
gested further by a recent large-sample factor analysis of
normal control performance which has identified separate
mnemonic and strategic factors in performance (Robbins
1996).

Neurosurgical patients with frontal lobe damage are
significantly impaired on this ‘strategic’ spatial searching
task and make more returns to boxes in which a token has
previously been found (‘between search’ errors) even at the
simplest levels of task difficulty (Owen et al. 1990, 1995a),
In addition, these patients are less efficient in the use of the
repetitive searching strategy described above, confirming
that at least some of their impairment in spatial working
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Spatial working memory; ‘'perfect’ use of strategy
Protocol of HM
SET 15 (6 boxes)
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number of searches made during each problem. The strategy score is
estimated by totalling the number of novel boxes used to initiate a
search sequence (all such boxes are underlined). In this example the
strategy scores for the patient and for the control are 18 and 9,
respectively. Numbers in bold represent ‘between search’ errors.
Numbers in outline represent *within search’ errors. For a full
description, see Owen et al. 1990; 1992; 1993; 1995 ; 1997,

memory may arise secondarily from a more fundamental
deficit in the use of organizational strategies. A typical
response pattern from one of the frontal lobe patients is
presented in Figure 8.2 (left), along with the correspond-
ing normal response pattern from a typical healthy control
subject (Figure 8.2, right). This task is also sensitive to
deficits in patients with temporal lobe damage and in
patients with selective amygdalo-hippocampectomy (Owen
et al. 1995a, 1997), although only at the most extreme level
of task difficulty (i.e. eight boxes). Moreover, unlike the
frontal lobe patients, the temporal lobe groups utilize a
normal and effective searching strategy.

In recent years, these two tasks have been used to draw
theoretically driven comparisons between groups of
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Figure §.3. Performance on the a) 69
spatial span task for the {a) non T
medicated PD patients with mild 1 s el
clinical symptoms (NMED PD),
medicated PD patients with mild
clinical syraptoms (MED PD
(mild}) and medicated PD patients
with severe clinical symptoms
(MED PD (severe)) (from Owen et
al. 1992). (b) Medicated patients
with severe clinical symptoms tested

Spatial Span

bath ‘on’ and ‘off* levodopa
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(c) Patients with MSA and PSP

(SRO) (from Robbins et al., 1594),
(d) Patieats with mild HD (from Q) 61
Lawrence et al. 1996), and patients
with severe HD or AD matched for 5
severity of dementia (from Lange et
al. 1995). Bars represent standard 41 L
error of the mean (s.em.)
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patients at different stages of PD (Owen et al. 1992, 1993),
between patients with PD, progressive supranucleat palsy
and multiple system atrophy (Robbins et al. 1992, 1994)
and between groups of patients with HD and AD matched
for degree of dementia {Lange et al. 1995).

WORKING MEMORY IN PARKINSON'S
DISEASE: THE EFFECTS OF DISEASE
SEVERITY

Several recent studies have compared the performance of
different groups of patients with PDD on these two spatial
mernory tests which tap demonstrably different aspects of
executive function (Morris et al. 1988; Lange et al. 1992;
Owen et al. 1992; Robbins et al. 1994). A central model for
much of this work has been the concept of cortico-striatal
loops (Alexander et al. 1986), which emphasizes the func-
tional inter-relationships between the neocortex and the
striatum. Of particular interest is the fact thar the princi-

5RO WO CONTROL  HD  CONTRCL  AD  CONTROH
CONTROL {mild) (severe}

pal target of basal ganglia outflow appears to be the fron-
tal lobes, Furthermore, different sectors of the striatum
project to specific premotor regions such as the supple-
mentary motor area or to discrete regions within dorsal
and ventral regions of the frontal cortex which have been
implicated in higher cognitive functions. A cross-sectional
study of patients with PD clearly demonstrated that lev-
adopa medicated and nonmedicated patients at different
stages of the disease can be differentiated in terms of their
performance on the test of spatial span (Owen et al. 1992)
that is known to involve regions of the ventrolateral frontal
lobe (Owen et al. 1996b). Thus, 4 significant impairment
was only observed in a subgroup of patients who were
medicated and had severe clinical symptoms (Figure 8.3a).
T'his effect was relatively specific as none of the three PD
groups was impaired on a test of pattern recognition
memory known to be sensitive to temporal lobe, but not
frontal lobe, damage (Owen etal. 19952). It is also unlikely
that high doses of dopaminergic medication adversely
affect performance in this group as a parallel study of 10
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Figure 8.4. Performance on the
Self-Ordered Spatial Search task for
{a) non-medicated PD padents with
mild clinical symptoms (NMED
PD), medicated PD patients with
mild clinical symptoms (MED PD
(mild}) and medicated PD patients
with severe clinical symptoms
(MED PD {severe)) (from Qwen et
al. 1992). (b) Medicated patients
with severe clinical symptoms tested

both ‘on’ and ‘off® levodopa
medication (from Lange et al, 1992)
() Patients with MSA and PSP
(SRO) (from Rabbins et al. 1994)
(d) Patients with mild HD (from
Lawrence etal. 1996), and patients
with severe HD or AD matched for
severity of dementia {from Lange et

severe)

al. 1995). Bars represent standard
error of the mean (s.e.m.)

MEA
CONTROL

patients with severe PI) has demonstrated that levodopa
withdrawal severely disrupts performance on the spatial
span task (Figure 8.3b) but does not affect pattern recogni-
tion memory (Lange et al. 1992),

In general, patients with PID are more impaired on the
strategic searching task (Figure 8.4a) which emphasizes
functions known to invelve dorsolateral regions of the
frontal cortex (Owen et al. 1996b). Thus, like the frontal
lobe group, medicated PD patients with both mild and
severe clinical symptoms made more errors than matched
controls and a non-significant trend towards impairment
was observed in the nonmedicated P1) group (Owen et al.
1992, 1993). Unlike the frontal lobe patients however,
none of the three PD groups was significantly impaired on
the measure of task strategy when assessed independently,
although subsequently when the same two medicated PD
groups were combined for matched comparisons with
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other basal ganglia groups (see Robbins et al. 1994),
‘frontal like’ strategic deficits were suggested. Again, it is
unlikely that dopaminergic medication plays any detri-
mental role in the performance of the medicated PD
groups on this spatial self~ordered searching task because
controlled withdrawal of levodopa results in a twofold
increase in the total number of errors made (Lange et al.
1992; Figure 8.4b).

The results of these studies clearly demonstrate that
patients at different stages of PD can be differentiated in
terms of their performance on two tests of spatial memory
known to involve different regions of the frontal lobe.
Among the patients with PD, there is an apparent increase
in severity and broadening of spatial memory impair-
ments as patients show increasing clinical disability, Thus,
when the task simply involved the retention and recall of
a spatial sequence within working memotry, deficits were
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only observed in a subgroup of patients with severe clin-
ical symptoms. By contrast, when the task required the
active manipulation of spatial information within working
memory, deficits were observed in medicated patients
with both mild and severe clinical symptoms. These
differences cannot simply be explained in terms of the
concurrent deterioration of motor function in these
patients because of the controlled nature and design of
these tests. The results do, in fact, concur fully with more
extensive neuropsychological evaluations of these same
patient groups which suggest that the pattern of cognitive
impairment in PD emerges and subsequently progresses
according to a defined sequence which evolves in parallel
with the motor deficits that characterize the diserder
(Owen et al. 1992, 1993). This apparent ‘progression’ on
tests which are known to emphasize different aspects of
executive function and appear to depend critically on
different regions within the lateral frontal cortex could
simply reflect a global difference in cognitive capacity
between patients with mild and severe PD. This seems
unlikely, however, as the three PID groups could not be
distinguished in terms of their performance on a test of
pattern recognition memory. This test is not sensitive to
frontal lobe excisions, although significant deficits have
been observed in patients with temporal lobe’ lesions
{Owen et al. 1995a) and with both mild and moderate
dementia of the Alzheimer type (Sahakian et al. 1990;
Sahgal et al. 1991). Furthermore, in the series of studies
described here, the PD patients were clinically diagnosed
as nondemented and were screened for dementia using
both the Mini Mental State Examination (Folstein et al.
1975) and the Kendrick Object Learning Test (Kendrick
1985). The possibility that concomitant depression in PD
may play a significant role in the progressive pattern of
deficits observed can also be discounted because clinical
measures of depression did not correlate with per-
formance on either of the spatial memory tests (Owen et
al, 1992). In addition, a quite distinct pattern of deficits on
these and other tests of cognitive function, has been
reported recently for a population of clinically depressed
subjects {Elliot et al. 1996).

The question therefore arises as te whether a plausible
neura! account might be formulated for this progressive
sequence of working memory deficits in patients with PD.
Nondopatrinergic forms of pathology, including nora-
drenergic, serotonergic and cholinergic deafferentation of
the cortex (Agid et al. 1987), may play a significant role in
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some of the cognitive deficits observed (Chapters 3 and 4).
Similarly, cortical Lewy bodies, which may occur even in
the early stages of PD, may play a contributory role (Byrne
et al. 1989; Gibb et al. 1989). The fact that both tasks are
extremely sensitive to the effects of controlled levodopa
withdrawal in a group of patients with severe PD (Lange
et al. 1992) suggests a predominantly dopaminergic sub-
strate for both deficits. Moreover, recent anatomical and
neuropathological evidence suggests that this evolving
pattern of impairments may be linked to what is known
about the likely spatiotemporal progression of dopamine
depletion within the striatum in relation to the terminal
distribution of its cortical afferents. This is highlighred by
a detailed postmortem neurochemical analysis which
shows uneven patterns of striatal dopamine loss in patients
dying with idiopathic PD {Kish et al. 1988). The study
confirms the well-documented finding that the putamen is
more severely depleted than the caudate nucleus and
extends the analysis to show that the caudal putamen is
more affected than the more rostral portions. In view of
apatomical and electrophysiological evidence, the
putamen is generally implicated in the motor deficits asso-
ciated with PD.

Dopamine levels in the caudate nucleus, which appear
to be a more serious candidate for mediating the cognitive
sequelae of PD), are also substantially depleted. This deple-
tion is greatest (to a maximum of about 90%) in the most
rostrodorsal extent of the head of this structure, an area
which is heavily connected with dorsolateral regions of the
frontal lobe (Yeterian and Pandya 1991). It seems likely,
therefore, that these rostrodorsal regions of the caudate
nucleus are subjected to greater disruption by the disease
and probably at an earlier stage of its progression. By con-
trast, ventral regions of the caudate, which are preferen-
tially connected with more ventral regions of the frontal
lobe (Yeterian and Pandya 1991), are relatively spared in
early PD), which may leave functions which are maximally
dependent on this neural circuitry relatively intact.

PD is also characterized by dopamine depletion within
the frontal cortex itself (Scatton et al, 1983) and degenera-
tion of the mesocortical dopamine system, which projects
to the frontal lobes and other cortical areas, may also play
a significant role in the apparent progressive deterioration
of ‘frontal’ working memory deficits in PID. This system
however, is known to be less severely affected (50% deple-
tion) than the nigrostriatal dopamine system in PD {Agid
et al. 1987) and possibly at a later stage of the disease
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process. It may therefore contribute to the more global
pattern of frontal lobe deficits observed in patients with
severe PD,

A COMPARATIVE STUDY OF MEMORY IN
PARKINSON'S DISEASE, PROGRESSIVE
SUPRANUCLEAR PALSY AND MULTIPLE
SYSTEM ATROPHY

A recent comparative study of patients with PD, pro-
gressive supranuclear paisy and multiple system atrophy
has demonstrated that these patients can also be differ-
entiated in terms of their performance on these two spatial
memory tasks. The latter group of patients are particularly
interesting because, unlike PD and progressive supra-
nuclear palsy, relatively few studies have specifically inves-
tigated the nature of cognitive deficits in multiple system
atrophy. In addition to the intrinsic striatal (caudate plus
putamen) pathology, damage to the nigrostriatal dopamine
pathway in multiple system atrophy is at least equal to, or
even greater than, that seen in PI). Like patients with
severe PD, a group of patients with progressive supra-
nuclear palsy were significantly impaired, compared to a
matched control group, on the test of spatial span, while
normal performance was observed in 2 group of patients
with multiple system atrophy (Robbins et al. 1994; Figure
8.3c). The progressive supranuclear palsy patients also
made significantly more errers on the spatial search task,
although unlike the PD patients, this deficit was quite
clearly related to the inappropriate use of the repetitive
search strategy, 4 pattern that is known to characterize the
performance of patients with frontal lobe damage (Owen
et al. 1990, 1997). In the multiple system atrophy patient
group, deficits were also observed in terms of errors
(Figure 8.3c), although, unlike the progressive supra-
nuclear palsy group, the strategic element of task per-
formance was preserved (Robbins et al. 1992, 1994).
Thus, like the PD group, the progressive supranuclear
palsy patients were significantly impaired on beth of the
spatial memory tasks, implicating both dorsal and ventral
regions of the lateral frontal cortex (Petrides 1994; Owen
et al. 1996b). In addition, these patients showed some
impairment in a measure of the efficient use of a strategy
for mediating the spatial search task, similar to that
observed in frontal lobe patients. Together, these findings
suggest a profound frontal lobe involvement in progressive
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supranuclear palsy, a pattern that is maintained when
other frontal lobe tasks arc considered {Robbins et al.
1994). Fhey also concur, in a general sense, with the
findings of other behavioral {Dubois et al. 1988; Grafman
etal. 1990} and neuroimaging (Blin et al. 1990) studies. For
example, in the latter PET study, the frontal-like cognitive
impairments in patients with progressive supranuciear
palsy were found to be correlated with frontal metabolic
activity rather than activity in the caudate nucleus.

The fact that performance on the spatial search task
was severely impaired in the multiple system atrophy
group, while performance on the spatial span task was
largely intact, also suggests some similaritics between
these patients and the neurosurgical group with circum-
scribed frontal lobe damage, although in general, this
pattern is rather less consistent than in the patient group
with progressive supranuclear palsy. This general pattern
is maintained across a broad range of neuropsychological
tasks (Robbins et al. 1992, 1994). The fact that these
patients were only impaired on the mnemonic and not the
strategic, aspect of task performance on the spatial search
test suggests that the deficit observed cannot simply be
explained in terms of high level executive dysfunction and
may reflect additional deficiencies of spatial memory
capacity that are dependent on posterior cortical and
subcortical systems.

COMPARATIVE STUDIES OF MEMORY IN
ALZHEIMER'S AND HUNTINGTON’S
DISEASES

It seems likely that striatal dysfunction, as occurs in both
PD and HD, would'lead to a similar pattern of executive
deficits, given the functional inter-relationship that exists
between different parts of the frontal cortex and the basal
ganglia described above (Alexander et al. 1986). Of partic-
ular significance for HD, in view of the primary site of its
striatal neuropathology, may be the anatomical and func-
tional relations that exist between the caudate nucleus and
the prefrontal cortex.

Lawrence et al. {1996), assessed 18 patients with early
HD on tests of executive and mnemonic function, includ-
ing the two spatial memory tasks of interest here. At this
stage of the disease, damage is thought to be restricted pri-
marily to the caudate nucleus and the putamen {Vonsattel
et al. 1985; Chapter 3). The HD group had significantly
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shorter spatial spans than a matched control group (Figure
8.3d), but performance on this task was far superior to that
of a group of patients with more severe clinical symptoms
{Lange et al. 1995). Although the deficit in spatial span
observed in the mild HID patients reached significance, it
is notable that their performance, unlike that of the severe
HI group, was relatively good compared to other patient
groups who are impaired on this task {see Figure 8.3). The
mild HD cases were also significantly impaired in terms of
the number of errors committed on the spatial search task
{Lawrence et al. 1996; Figure 8.4d) and this group also
made significantly less use of the efficient searching strat-
egy, known to improve performance on this task. This
pattern of deficit is similar to that observed in neuro-
surgical patients with frontal lobe damage. In the more
severe HD group, deficits on the spatial search task
(errors), were far greater than in any other group that has
been assessed on this test (Figure 8.4d). In addition, this
group showed a tendency to make a very high number of
within search etrors, ie. to make repeated, incorrect
responses within a given search. This severe impairment
in basic mnemonic processing was not observed in the
more mildly affected HD patients and is consistent with
increased ventrolateral frontal lobe and/or medial tempo-
ral lobe involvement late in the course of HD. Together,
these findings may suggest a similar pattern of functional
degeneration in HP to that observed previously in PD
(Owen et al. 1992), by which functions of the dorselateral
frontal cortex are affected ac an earlier stage of the disease
process than functions of either the ventrolateral frontal
cortex or the medial temporal lobe structures. This fune-
tional similarity fits with what is known about the neuro-
pathological progression of HD in which neuronal loss
begins with the striosome compartment of the head of
the caudate nucleus and progresses in a dorsal-to-ventral
direction (Hedreen and Folstein 1995). Striosomes in the
dorsal regions of the caudate nucleus are connected pri-
marily with the dorsolateral frontal cortex, while those in
ventral regions of the caudate nucleus receive input from
limbic-related areas, Importantly, however, unlike patients
with mild' PD, the patients with mild HI) studied by
Lawrence et al, {1996), were also impaired on a test of
visual pattern recognition memory which is known not
to involve the frontal iobe, but rather, the temporal lobe
and medial temporal lobe structures (Owen et al. 1995a).
Connections from the inferotemporal cortex project
heavily to the ventrocaudal striatum (ventral putamen and
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tail of the caudate nucleus) (Yeterian and Pandya 1995),
which has important implications for the pattern of defi-
cits ohserved in HID, because, unlike PD, some of the ear-
liest neuropathological changes in HD have been reported
to occur in the tail of the caudate nucleus (Vonsattel et al.
1985). Thus, it seems likely that the additional impairment
in pattern recognition memory in early HD is a result of
damage to the ventrocaudal striatum,

Like patients with HD), patients with AD can be expec-
ted to be impaired in tests of executive function as the
disease progresses, although both neuroimaging and
neuropsychological evidence supports the hypothesis that
anterior cortical functions are relatively more immune to
disruption in this disease (Parks et al. 1993). Sahgal et al.
(1991, 1995) have reported spatial span to be impaired in
patients with both mild and moderate AD, with the
maoderate group being significantly more impaired than
those with mild AD. Both groups were also impaired on
the spatial search task, but not differentially and strategic
deficits of the type seen following frontal lobe damage were
not evident.

Lange et al. {1995) compared performance in patients
with mild to moderate AD and HD matched for level of
clinical dementia on these, and other tests of executive
function, in order that any differences in specific cognitive
functions could not be attributed simply to nonspecific
intellectual deterioration, Patients with HD had consider-
ably shorter spatial span scores than patients with AD
(Figure 8.3d), although both groups were impaired rela-
tive to control subjects matched for age and premorbid 1IQ,
In addition, the HD group made more errors on the spatial
search task than the AD group, particularly at more
extreme levels of task difficulty (Figure 8.4d). The results
clearly demonstrate that, when matched for level of
dementia, patients with HD are significantly inferior to
patients with AD on the two spatial memory tests that are
know to be sensitive to frontal lobe damage and basal
ganglia dysfunctien. In fact, this general pattern of deficit
was maintained across a range of tests of executive func-
tion (Lange et al. 1995) and in this sense, the findings are
consistent with the existence of greater fronto-striatal
pathology in HD than in AD (Berent et al. 1988,
Weinberger et al. 1988; Starkstein et al. 1992). It is impor-
tant to note, however, like patients in the later stages of PD,
the deficits in the D group were not limited to tests
clearly requiring executive function. This suggests that
the entire pattern of cognitive deficits in HID cannot be
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explained by a fronto-striatal hypothesis and may include
impairments arising from additional pathology which
affects cortical regions other than the prefrontal cortex,
such as the temporal lobe. The results are consistent,
therefore, with the hypothesis that the neural substrates of
many of the cognitive deficits in HD are centered on the
caudate nucleus {Berent etal. 1988; Weinberger et al. 1988;
Starkstein et al. 1992), but that additional cortical atrophy
may also be significant (Berent et al. 1988).

EXECUTIVE FUNCTION AND
NEURODEGENERATIVE DISEASE: FUTURE
DIRECTIONS

The studies described above clearly demonstrate how
neuropsychological models of working memery function,
developed largely through animal lesion studies and tested
using sophisticated functional neurcimaging techniques,
have led directly to a marked reappraisal of the status of
cognitive deficits in neurodegenerative disease. Much of
this work has sought to verify the ‘frontal’ nature of cogni-
tive deficits in neurodegenerative groups, such as PD and
HD and, on the whole, experimental results have sup-
ported such a model; however, that is not to say that cogni-
tive impairments resulting from striatal dysfunction are
identical to those seen following damage to associated
frontal regions. In fact, the studies reported here demon-
strate quite clearly that when task demands are subjected to
a careful process analysis, subtle but important differences
emerge between frontal lobe patients and patients with
various neurodegencrative diseases. For example, the
deficit in ‘strategic’ aspects of task performance, which is
central to the pattern of impairment observed in patients
with frontal lobe damage, is clearly present in patients with
HD and progressive supranuclear palsy, but less obvicus in
PD and markedly absent in multiple system atrophy.
Future studies should seek to investigate these potentially
important functional differences further by relating them
to what is known about the differential neurapathology in
each condition.

In drawing comparisons both within and between
groups of patients, it is also important to consider the
possibility that other ‘nonfrontal’ aspects of cognitive
function may be affected. For example, in some respects,
the pattern of deficits observed on the spatial search task
in patients with severe PD is similar to that observed in
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patients with temporal lobe excisions who make more
errors than controls, but exhibited no deficit in task strat-
egy (Owen et al., 1997). This observation is consistent
with recent cross-sectional studies which have demon-
strated that, while cognitive deficits in early PD are pre-
dominantly ‘frontal like’, performance on tasks which
depend preferentially on the medial temporal lobe struc-
tures is also affected in the later stages of the disease
process {Owen et al. 1992, 1993),

Finally, the majority of studies that have investigated
executive processes in neurodegenerative disease in recent
years have concentrated on patients with PI) and this pre-
sumably reflects greater patient availability in this group
and the fact that the underlying neuropathology of PD is
relatively well established. Furure studies, however, should
seck to make more direct comparisons between groups of
patients with different
including PD), multiple system atrophy, progressive supra-

neurcdegenerative  disorders

nuclear palsy and HD and, wherever possible, match across
groups for the severity of clinical symptoms. In addition,
increasingly sophisticated functional imaging technigues
such as functional MRI and PET (Chapter 6) may supple-
ment such comparisons and provide a mechanism by which
the neural underpinnings of some of the deficits described
above can be more clearly defined. For example, a recent
blood flow activation study using PET in patients with PD
has demonstrated normal changes in regional cerebrat
blood in the prefrontal cortex during two tests of executive
function involving planning and spatial working memory
(Owen et al. 1996a). In contrast, abnormal blood flow in the
internal segment of the globus pallidus was observed
during both tasks suggesting that striatal dopamine deple-
tion in PD may affect the expression of frontal lobe func-
tions in PD by disrupting the normal pattern of basal
ganglia outflow to this region.

Such investigations, when combined with information
derived from cognitive psychology, clinical neuropsy-
chology and neurobiology should certainly provide a
significant focus for future research and may lead ulti-
mately to a better understanding of the distinctive roles
played by the frontal cortex and the striatum in the opera-
tion of the ‘fronto-striatal’ functional loops (Alexander et
al. 1986).
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