Dr. Jim Staples
Comparative Physiology and Biochemistry
Other Reasearch
Although I’m not currently working on these projects, I have in the past and hope to in the near future.
Insect Muscle Metabolism: During flight insects such as this Bumblebee (Bombus spp.) produce some of the highest mass specific metabolic rates among animals. Our research indicates that during routine flight, many oxidative and glycolytic enzymes work close to their maximal capacities. In contrast, maximal exercise in most vertebrates rarely employs more than 20% of enzyme capacity. It appears that the metabolic components of these high-performance insects are pushed close to the design constraints of the system as a whole. We also research enzymes systems in bumblebees that may help them produce heat in cold climates.
Hypoxia Tolerance in Chambered Nautilus: The chambered Nautilus (Nautilus pompilius) lives on steep fore-reef slopes of coral islands in the southern Pacific and eastern Indian oceans. Although they may come as shallow as 75m at night, they retreat to the depths (up to 600m) during the day. Oxygen content may be low at these depths. In addition when threatened Nautilus retreat into their shells and cannot ventilate their gills. Therefore it is not surprising that these cephalopod molluscs can tolerate several hours of severe hypoxia. Research with Dr. Bob Boutilier suggests that this hypoxia tolerance is largely due to a reduced metabolic rate as ambient oxygen falls. Nautilus may also be able to use its shell as a SCUBA tank, exploiting the large oxygen stores contained in its chambers.
Dr. Staples' Links: 