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The economics of altruism and
cooperation in class-structured
populations: what’s in a cost?
What’s in a benefit?

G. WILD & P. D. TAYLOR

Department of Mathematics and Statistics, Queen’s University Kingston, Ontario,

Canada

Lehmann & Keller (2006, and hereafter referred to as

either ‘the authors’ or L&K) have identified the cost-to-

benefit ratio, C/B as being a principal factor in the

evolution of altruism and cooperation. The authors argue

that this ratio (or some equivalent version) cannot

exceed a given threshold if a selective advantage of

altruism or cooperation is to exist. Of course, many

biologists will readily recognize Hamilton’s (1964) rule as

a special case of this result. An actor is willing to pay a

cost, C, to give a benefit, B, to a recipient whenever

C=B < R; ð1Þ
where R is a measure of the relatedness between the

social partners. Essentially, inequality (1) tells us that, for

altruism to be advantageous, the normalized cost of

altruism itself cannot be too large.

The simplicity of Hamilton’s rule, as it is stated in line

(1), certainly understates the tremendous scope of Ham-

ilton’s idea. It turns out that Hamilton’s rule (1) can be

modified so that it applies to the evolution of altruism in a

wide variety of situations (Taylor, 1988, 1990). In fact,

some important aspects of this variety may have been

neglected by the direct fitness model presented by L&K.

As we argue below, understanding the costs-to-benefit

ratio in general terms can show us that the scope for the

promotion of altruism (especially when altruism is

mediated by coercion, punishment, or policing) might

be different than that suggested by the authors.

Kin selection in a class-structured
population

Many interesting examples of kin selection come from

class-structured populations. Class structure can occur

whenever it is possible to group individuals according to

some shared quality. Familiar examples of class structure

include sex structure (e.g. class 1 ¼ female, class 2 ¼
male) and age structure (e.g. class 1 ¼ juvenile, class

2 ¼ adult). Class structure can also arise when popula-

tions experience inbreeding depression (Denver & Taylor,

1995), or when populations occur in spatially hetero-

geneous environments (Leturque & Rousset, 2002).

While the authors have presented some examples of

class structure in their supplementary material, their

work does not address class-structured models in general.

Our aim was to do so in a relatively straightforward

fashion.

The main challenge in constructing a class-structured

kin-selection model comes from the fact that individuals

have different components of fitness (e.g. fitness through

sons, fitness through daughters; survival, fecundity). In

general, a class-structured model requires knowledge of

wij, the expected number of class-i offspring produced by

an individual belonging to class j (weighted by genetic

contribution).

We can think of wij as a function of the behaviour

exhibited by one or more individuals. A deviant level of

behaviour, x will change a number of different wij

expressions. To determine whether a particular (positive)

behavioural deviation is favoured in some population we

can use either a direct fitness argument (Taylor & Frank,

1996) or an inclusive fitness argument (Taylor, 1988,

1990). In either case, recent work suggests that we

should get the same mathematical expression (Taylor &

Frank, 1996, P.D. Taylor, G. Wild & A. Gardner

unpublished; cf. Frank, 1997).

Consider a relatively simple situation in which all

actors belong to the same class (e.g. adult females). In a

direct fitness model, we fix attention on a particular

recipient (the focal individual, FI to use the terminology

of L&K), and consider how each of several actors

influences the fitness of that recipient. We express the

fitness of a focal recipient chosen from class j as the

sum,
P

i

viwij, where the coefficients vi denote the repro-

ductive value of class-i components of recipient fitness,

thought of as the asymptotic genetic contribution of

class-i individuals to a population in the distant future.

Such a notion requires, of course, some assumption

about the future trajectory of the population; and for this

purpose we suppose that we have a pure monomorphic

ecologically stable resident population. Thus reproduc-

tive value depends only on the resident behaviour, call it

x*. Of course, if a mutant behaviour, x, is introduced, this

assumption will no longer be valid, but for behavioural

deviations of small effect (weak selection) the approxi-

mation will be reasonable (more precisely it will hold to

first-order in mutant deviation x ) x*). Reproductive

value acts as an ‘exchange rate’ that allows us to add the

wij’s and express recipient fitness as a scalar quantity.

Even though all actors belong to the same class, we

usually have to account for different categories of actor–

recipient interactions (e.g. mother interacting with

daughter, aunt interacting with niece, etc.). We index

actors using integers k, and let xk denote the behaviour

expressed by the kth actor. When the genotype of the

recipient is changed, we expect to observe correlated

changes in xk – where the extent of the change is
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determined by the degree of relatedness between actor k

and recipient j, Rk fi j. These behavioural changes result

in changes to recipient fitness. In fact, we can express the

change in recipient fitness, mathematically, as

X
actors k

d

dxk

X
i

viwij

" #
xk¼x�

Rk!j ¼
X

ik

vi

dwij

dxk

����
xk¼x�

Rk!j: ð2Þ

where the relatednesses are also calculated in the

resident population. If the frequency of class-j recipients

is uj we express the expected change in recipient fitness

as

DWðx�Þ ¼
X

j

X
ik

vi

dwij

dxk

����
xk¼x�

Rk!j

 !
uj

¼
X
ijk

vi

dwij

dxk

����
xk¼x�

ujRk!j: ð3Þ

The function DW(x*) is often called the ‘inclusive

fitness effect’, and can be derived either using a direct

fitness approach (as we have done above), or using a

classical inclusive fitness approach (e.g. Taylor, 1988,

1990). As long as selection is weak, the sign of DW(x*)

tells us whether selection favours an increase or decrease

in the level of behaviour. If DW(x*) > 0, then x* is

selected to increase over time, if DW(x*) < 0, then x* is

selected to decrease over time. When DW(x*) ¼ 0 the

population is said to be at ‘evolutionary equilibrium’.

To establish a connection between eqns (1) and (3) we

will change our notation slightly. If the derivative dwij/

dxk|xk
¼ x* > 0, we will place the triple (i, j, k) into a set

called B, and we will refer to the derivative itself as a

‘benefit’ of deviant behaviour, Bijk. If the same derivative

is negative we label it a ‘cost’, )Cijk and place (i, j, k) into

a set called C. The quantities Bijk and Cijk might represent

fecundity benefits and fecundity costs, respectively. That

is to say, Bijk and Cijk could be the same ‘benefits’ and

‘costs’ described by the parameters B and C used by L&K

(in fact, fecundity costs and benefits are the only kind

considered by the class-structured examples presented in

the supplementary material). However, Bijk and Cijk

might also be used to represent other kinds of benefits

or costs paid through other components of fitness (e.g.

survival). It is also useful to point out that Bijk and Cijk can

also describe the fitness consequences of some of the

other factors considered by L&K, like repeated interac-

tions (e.g. Irwin & Taylor, 2001).

We see now that

DWðx�Þ ¼
X
ði;j;kÞ2B

viBijkujRj!k �
X
ði;j;kÞ2C

viCijkujRj!k ð4Þ

or simply DW(x*) ¼ b)c, where b and c correspond to the

first and second terms on the right hand side of eqn (4),

respectively. Note that, in general, we expect that each

term of the summand in b and c will depend on x*. Note

also that our choice of notation b and c is motivated by

the notation introduced by L & K (e.g. their eqn 4), but

our usage differs in that our benefits and costs incorpo-

rate relatedness. Our expression (4) may well serve as a

more general, and (conceptually) more straightforward

framework in which to discuss the evolution of altruism.

If we think of x* as a probability of behaving altruisti-

cally, inequality (4) tells that altruism is increasing when

c

b
< 1 ð5Þ

where b and c are overall benefit and cost terms, with

components weighted by reproductive value, frequency

and relatedness. Certainly, at any particular x*, an

increase in altruism will not be favoured if the inequality

in (5) is reversed. The review by L&K details some of the

ways in which a reversal of (5) might be prevented.

L&K concentrate their analysis on ways in which

altruism between relatives can be promoted by direct

manipulation of benefits Bijk and costs Cijk (e.g. via

punishment, coercion). Inequality (5) provides an

analogue to the ratio C/B, highlighted by L&K, but the

mathematical form of eqn (4) suggests a number of

alternative pathways through which the evolution of

altruism might be promoted. The economics of the

decision to ‘help’ or ‘not help’ a relative might also be

influenced by a change in reproductive values, vi, a

change in class frequencies uj, and even through a

change in relatedness coefficients Rk fi j.

Discussion

The authors have established a set of biological condi-

tions necessary for the evolution of altruism, in partic-

ular, if altruism or cooperation has been observed then

one of their four conditions must have been met. The

factors they identify would presumably appear as terms

in our eqn (4) and their conditions for the increase of

altruistic behaviour would correspond to our condition

(5). The strength of our formulation is that it points to

pathways other than through direct manipulation of

costs and benefits. This observation might be especially

important for examples of punishment, coercion and

policing among relatives. Class structure seems to be a

key feature of model systems where punishment occurs

(Clutton-Brock & Parker, 1995). First, it is possible that

‘punishers’ (e.g. dominant individuals) are less common

than ‘punishees’ (e.g. subordinates). Secondly, being a

‘punisher’ rather than a ‘punishee’ may necessarily

influence your genetic contribution to future generations

(i.e. your reproductive value). Lastly, it is also possible

that punishment/coercion has complicated consequences

for the fitness of individuals other than those directly

involved in the interaction (e.g. through reduced or

increased local competition). These concerns would be

naturally addressed by our general class-structured

approach (4). As models of punishment, coercion and

policing are still in their infancy (L&K), it seems doubly

important to point out that other factors, like reproduc-
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tive value and class frequency, deserve consideration

alongside C and B.
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